Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = aluminium diethylphosphinate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3034 KiB  
Article
Upcycling of SARS-CoV-2 Rapid Antigen Test Cassettes into Flame Retardant Plastics
by Tadej Slatinek and Janez Slapnik
Materials 2024, 17(10), 2384; https://doi.org/10.3390/ma17102384 - 16 May 2024
Cited by 1 | Viewed by 1533
Abstract
The COVID-19 pandemic resulted in the generation of large quantities of medical waste and highlighted the importance of efficient waste management systems. One good example of this is rapid antigen tests, which contain valuable resources, and which are usually incinerated after their use. [...] Read more.
The COVID-19 pandemic resulted in the generation of large quantities of medical waste and highlighted the importance of efficient waste management systems. One good example of this is rapid antigen tests, which contain valuable resources, and which are usually incinerated after their use. The present study aimed to evaluate the potential of waste rapid antigen test cassettes (RATCs) as a resource for the preparation of sustainable flame-retardant plastics. Milled RATCs were compounded with different concentrations (10–30 wt.%) of aluminium diethylphosphinate (ADP) and injection moulded into test specimens. Prepared samples were exposed to ultraviolet (UV) ageing for varying durations and characterised by Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile tests, Charpy impact tests, and vertical burning tests. FT-IR analysis revealed that RATCs are composed mainly of high-impact polystyrene (HIPS), which was further confirmed by suitable glass transition temperatures (Tg) determined by DSC and DMA. The addition of ADP resulted in progressive embrittlement of HIPS with increasing concentration, while flammability decreased significantly and reached V-1 classification at loading of 30 wt.%. UV ageing caused photo-oxidative degradation of HIPS, which resulted in decreased strain-at-break, while flammability was not affected. Full article
Show Figures

Figure 1

15 pages, 1765 KiB  
Article
A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina
by Dora Bjedov, Rone S. Barbosa, Danielle Palma de Oliveira, Daniel Junqueira Dorta, Maíra Ignacio Sarmento, Renato Almeida Sarmento, Ana L. Patrício Silva and Carlos Gravato
Biology 2024, 13(5), 337; https://doi.org/10.3390/biology13050337 - 12 May 2024
Cited by 4 | Viewed by 2335
Abstract
Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of [...] Read more.
Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L−1 flame-retardant aluminium diethylphosphinate (ALPI), 10 μg mg−1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments. Full article
Show Figures

Figure 1

Back to TopTop