Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = alkyl derivatives of methoxyphenols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1454 KiB  
Article
Pig Slurry Fertilization Changes the Pyrolytic Signature of Humic Substances in Calcareous Soil
by Àngela D. Bosch-Serra, Diana E. Jiménez-de-Santiago, José A. González-Pérez and Gonzalo Almendros
Agronomy 2025, 15(3), 725; https://doi.org/10.3390/agronomy15030725 - 17 Mar 2025
Cited by 1 | Viewed by 766
Abstract
The aim of this study was to determine the effect of progressive pig slurry (PS) rates, applied over a 12-year period, on the molecular composition of soil organic matter in a calcareous soil. Annual organic matter rates of PS ranged from 1.0 to [...] Read more.
The aim of this study was to determine the effect of progressive pig slurry (PS) rates, applied over a 12-year period, on the molecular composition of soil organic matter in a calcareous soil. Annual organic matter rates of PS ranged from 1.0 to 4.8 Mg ha−1. Humic acids (HAs) were extracted from field plots treated with PS, including a control (no PS applied). These HAs were analysed using pyrolysis–gas chromatography–mass spectrometry. The proportions of the 122 major compounds released from the soil HAs indicated that PS stimulated humification processes, with the degree of enhancement depending on the application rate. The applied PS contained a high proportion of aliphatic compounds, but only steroids and triterpenes accumulated in the HA soil fraction, and this was only observed at low PS rates. These results suggest that the application of PS leads to a dose-dependent increase in alkyl compounds, mainly alkanes and olefins. Aromatic compounds also showed a dose-dependent increase, but not in terms of the demethoxylated compounds typical of mature humic substances found in the original soil. Instead, the increase in aromatics was observed in the form of methoxyphenols, suggesting a recent incorporation of lignin derivatives from crop residues into the HA. Full article
Show Figures

Figure 1

17 pages, 8440 KiB  
Article
Secondary Amines from Catalytic Amination of Bio-Derived Phenolics over Pd/C and Rh/C: Effect of Operation Parameters
by Maray Ortega, Raydel Manrique, Romel Jiménez, Miriam Parreño, Marcelo E. Domine and Luis E. Arteaga-Pérez
Catalysts 2023, 13(4), 654; https://doi.org/10.3390/catal13040654 - 27 Mar 2023
Cited by 4 | Viewed by 3455
Abstract
The production of renewable chemicals using lignocellulosic biomass has gained significant attention in green chemistry. Among biomass-derived chemicals, secondary amines have emerged as promising intermediates for synthetic applications. Here, we report a systematic study on the reductive amination of phenolics with cyclohexylamine using [...] Read more.
The production of renewable chemicals using lignocellulosic biomass has gained significant attention in green chemistry. Among biomass-derived chemicals, secondary amines have emerged as promising intermediates for synthetic applications. Here, we report a systematic study on the reductive amination of phenolics with cyclohexylamine using Pd/C and Rh/C as catalysts. The catalytic tests were performed in batch reactors under different reaction conditions (various: amine concentration (0.1–0.4 mol/L), hydrogen pressure (0–2.5 bar), temperature (80–160 °C), and substituted phenols (phenol, o-cresol, p-cresol, and methoxyphenol)) and using tert-amyl alcohol as a solvent. The experimental observations were consistent with a multi-step mechanism, where hydrogenation of phenol to cyclohexanone is followed by condensation of the ketone with cyclohexylamine to form an imine, which is finally hydrogenated to produce secondary amines. In addition, there was evidence of parallel self-condensation of the cyclohexylamine. The study also supported a limited dehydrogenation capacity of Rh/C, unlike Pd/C, which increases this capacity at higher temperatures generating a higher yield of cyclohexylaniline (up to 15%). The study of the alkylated phenols demonstrated that the nature and propensity of hydrogenation of the phenolic controls their amination. Kinetic analysis revealed reaction orders between 0.4 and 0.7 for H2, indicating its dissociative adsorption. Meanwhile, phenol’s order (between 1–1.8) suggests a single participation of this compound in the hydrogenation step. The order of 0.4 for cyclohexylamine suggests its participation as a surface-abundant species. The apparent activation energies derived from a power law approximation were of 37 kJ/mol and 10 kJ/mol on Pd/C and Rh/C, respectively. Full article
Show Figures

Figure 1

19 pages, 3133 KiB  
Article
Reductive Catalytic Fractionation of Abies Wood into Bioliquids and Cellulose with Hydrogen in an Ethanol Medium over NiCuMo/SiO2 Catalyst
by Boris N. Kuznetsov, Angelina V. Miroshnikova, Aleksandr S. Kazachenko, Sergey V. Baryshnikov, Yuriy N. Malyar, Vadim A. Yakovlev, Andrey M. Skripnikov, Olga Yu. Fetisova, Yong Xu and Oxana P. Taran
Catalysts 2023, 13(2), 413; https://doi.org/10.3390/catal13020413 - 15 Feb 2023
Cited by 5 | Viewed by 2234
Abstract
Noble metal-based catalysts are widely used to intensify the processes of reductive fractionation of lignocellulose biomass. In the present investigation, we proposed for the first time using the inexpensive NiCuMo/SiO2 catalyst to replace Ru-, Pt-, and Pd-containing catalysts in the process of [...] Read more.
Noble metal-based catalysts are widely used to intensify the processes of reductive fractionation of lignocellulose biomass. In the present investigation, we proposed for the first time using the inexpensive NiCuMo/SiO2 catalyst to replace Ru-, Pt-, and Pd-containing catalysts in the process of reductive fractionation of abies wood into bioliquids and cellulose products. The optimal conditions of abies wood hydrogenation were selected to provide the effective depolymerization of wood lignin (250 °C, 3 h, initial H2 pressure 4 MPa). The composition and structure of the liquid and solid products of wood hydrogenation were established. The NiCuMo/SiO2 catalyst increases the yield of bioliquids (from 36 to 42 wt%) and the content of alkyl derivatives of methoxyphenols, predominantly 4-propylguaiacol and 4-propanolguaiacol. A decrease in the molecular mass and polydispersity (from 1870 and 3.01 to 1370 Da and 2.66, respectively) of the liquid products and a threefold increase (from 9.7 to 36.8 wt%) in the contents of monomer and dimer phenol compounds were observed in the presence of the catalyst. The solid product of catalytic hydrogenation of abies wood contains up to 73.2 wt% of cellulose. The composition and structure of the solid product were established using IRS, XRD, elemental and chemical analysis. The data obtained show that the catalyst NiCuMo/SiO2 can successfully replace noble metal catalysts in the process of abies wood reductive fractionation into bioliquids and cellulose. Full article
Show Figures

Figure 1

14 pages, 1692 KiB  
Article
New Eugenol Derivatives with Enhanced Insecticidal Activity
by Maria José G. Fernandes, Renato B. Pereira, David M. Pereira, A. Gil Fortes, Elisabete M. S. Castanheira and M. Sameiro T. Gonçalves
Int. J. Mol. Sci. 2020, 21(23), 9257; https://doi.org/10.3390/ijms21239257 - 4 Dec 2020
Cited by 38 | Viewed by 5840
Abstract
Eugenol, the generic name of 4-allyl-2-methoxyphenol, is the major component of clove essential oil, and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant actions. New O-alkylated eugenol derivatives, bearing a propyl chain with terminals like hydrogen, hydroxyl, ester, chlorine, and [...] Read more.
Eugenol, the generic name of 4-allyl-2-methoxyphenol, is the major component of clove essential oil, and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant actions. New O-alkylated eugenol derivatives, bearing a propyl chain with terminals like hydrogen, hydroxyl, ester, chlorine, and carboxylic acid, were synthesized in the present work. These compounds were later subjected to epoxidation conditions to give the corresponding oxiranes. All derivatives were evaluated against their effect upon the viability of insect cell line Sf9 (Spodoptera frugiperda), demonstrating that structural changes elicit marked effects in terms of potency. In addition, the most promising molecules were evaluated for their impact in cell morphology, caspase-like activity, and potential toxicity towards human cells. Some molecules stood out in terms of toxicity towards insect cells, with morphological assessment of treated cells showing chromatin condensation and fragmentation, which are compatible with the occurrence of programmed cell death, later confirmed by evaluation of caspase-like activity. These findings point out the potential use of eugenol derivatives as semisynthetic insecticides from plant natural products. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

Back to TopTop