Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = alkaline mine drainage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3333 KB  
Article
Assessing Different Passive Treatment Pathways of Acid Mine Drainage in an Ecologically Engineered Wetland After a Veldfire
by Paul Oberholster, Yolandi Schoeman, Anna-Maria Botha, Petri Oberholster and Jacques Maritz
Processes 2025, 13(11), 3494; https://doi.org/10.3390/pr13113494 - 30 Oct 2025
Viewed by 336
Abstract
In this paper, different physiochemical and biological indicators were tested to determine and compare the water quality of the Zaalklapspruit ecologically engineered wetland before and after a veldfire. Five sampling sites and a reference site 2.2 km upstream of an acid mine drainage [...] Read more.
In this paper, different physiochemical and biological indicators were tested to determine and compare the water quality of the Zaalklapspruit ecologically engineered wetland before and after a veldfire. Five sampling sites and a reference site 2.2 km upstream of an acid mine drainage (AMD)-decanting coal mine were selected and sampled before and after the veldfire. The “black box” method was also employed to determine the percentage change in the selected in- and outflow variables before and after the veldfire. After the veldfire, Al was reduced by 97.43%. The same trend was observed for Fe, which decreased by 99.65% at the outflow, and Mn and sulphate levels decreased by 98.41% and 68.16%. Possible pathways of the reduction in acid mine drainage impacts on the wetland were identified after the veldfire, including the increase in waterflows during the wet season causing a dilution factor, and phycoremediation by macroalgae drifting mats that accumulate metals and ash slurry from the burned-out macrophyte plant material that may have increased the wetland’s alkalinity. A comprehensive framework for the digital twinning and monitoring of the effects of natural disasters on wetlands is also presented. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

41 pages, 6056 KB  
Article
Comparison of Cu(II) Adsorption Using Fly Ash and Natural Sorbents During Temperature Change and Thermal–Alkaline Treatment
by Anna Ďuricová, Veronika Štefanka Prepilková, Michal Sečkár, Marián Schwarz, Dagmar Samešová, Tomáš Murajda, Peter Andráš, Adriana Eštoková, Miriama Čambál Hološová, Juraj Poništ, Andrea Zacharová, Jarmila Schmidtová, Darina Veverková and Adrián Biroň
Materials 2025, 18(19), 4552; https://doi.org/10.3390/ma18194552 - 30 Sep 2025
Viewed by 654
Abstract
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of [...] Read more.
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of design, affordability or high efficiency. The latest scientific knowledge has shown that the use of waste and natural adsorbents is economical and effective. This study aimed to evaluate the efficiency of the adsorption process of natural and waste materials—zeolite, bentonite and fly ash—under the influence of temperature and modification of these adsorbents. The novelty of this study resides in an adjustment of the modification method of adsorbents compared to previous research: thermal–alkaline treatment versus hydrothermal one. Another novelty is the use of modified fly ash from biomass combustion as an adsorbent in comparison with the previously used fly ash from coal combustion. The modification of the adsorbents made the adsorption process more effective at all experimental concentrations. The characterisation of adsorbent samples was performed using X-ray diffraction (XRD). The parameters of the adsorption isotherms, Langmuir, Freundlich and Temkin, were estimated by nonlinear regression analysis. The adsorption capacity of Cu(II) of fly ash was comparable to natural adsorbents. Adsorption processes were better described by pseudo-second-order kinetics. At the end of this study, the suitability of using the adsorbents to reduce the concentration of Cu(II) in neutral mine effluents was observed in the following order at 30 °C: unmodified fly ash > modified bentonite > unmodified zeolite. At the temperatures of 20 °C and 10 °C, the same trend of the suitability of adsorbents use was confirmed: modified bentonite > modified zeolite > modified fly ash. The practical applicability of this study lies in the expansion of knowledge in the field of adsorption processes and in the improvement of waste management efficiency of heating plants not only in Slovakia, but also globally. Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters (2nd Edition))
Show Figures

Figure 1

16 pages, 2125 KB  
Article
Passive Treatment of Acid Mine Drainage Effluents Using Constructed Wetlands: Case of an Abandoned Iron Mine, Morocco
by Ilham Naghoum, Mohamed Edahbi, José Alberto Herrera Melián, José Miguel Doña Rodriguez, Nuno Durães, Beatriz Arce Pascual and Farida Salmoun
Water 2025, 17(5), 687; https://doi.org/10.3390/w17050687 - 27 Feb 2025
Cited by 3 | Viewed by 3272
Abstract
This study presents the effectiveness of two vertical subsurface flow (VF) constructed wetlands (CWs), one planted with Juncus effusus (PCW) and the other unplanted (CCW), for the remediation of acid mine drainage (AMD) from the Ouixane abandoned mine site located in Morocco. The [...] Read more.
This study presents the effectiveness of two vertical subsurface flow (VF) constructed wetlands (CWs), one planted with Juncus effusus (PCW) and the other unplanted (CCW), for the remediation of acid mine drainage (AMD) from the Ouixane abandoned mine site located in Morocco. The VFs were fed with highly acidic AMD (pH < 2.5) and were evaluated over a period of 150 days. The substrate was composed of limestone, as a neutralizing agent, river gravel, and natural peat moss, with the goal of promoting the growth of sulfate-reducing bacteria (SRB) and metals precipitation. The results showed that both VFs successfully neutralized the acidity, with effluent pH values ranging from 3.57 to 8.5, indicating effective alkalinization of the AMD. Significant differences (p < 0.05) were observed between the metal removal rates of the CCW and the PCW, except for Mn. Both types of constructed wetlands (CWs), the planted system (PCW) and the unplanted system (CCW), exhibited similar efficiencies in metal removal from the influent. The rates of metalloid removal were as follows: 99.9% vs. 99% for Cr, 99% vs. 80% for As, 96% vs. 94 for Zn, 99.94% vs. 99% for Fe, and 90% vs. 81% for Al. Microbial sulfate reduction was increased from 43% to 50% by the presence of plants. Sediment analysis revealed that metals were primarily in stable forms: Fe and Zn were mostly associated with Fe-Mn oxides, while Mn and Ni were predominantly present as carbonates. These observations indicate a relative stability of metals in the CWs’ sediment. This study highlights the effectiveness of the studied CWs, particularly those with vegetation, for AMD remediation, emphasizing the importance of neutralizing agents, plants, and organic substrates in the treatment process. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 33681 KB  
Article
Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies
by Joaquín Delgado, Olivia Lozano, Diana Ayala, Domingo Martín and Cinta Barba-Brioso
Minerals 2025, 15(1), 15; https://doi.org/10.3390/min15010015 - 26 Dec 2024
Cited by 2 | Viewed by 1749
Abstract
Traditional mining activities in Zaruma-Portovelo (SE Ecuador) have led to high concentrations of pollutants in the Puyango River due to acid mine drainage (AMD) from abandoned waste. Dispersed alkaline substrate (DAS) passive treatment systems have shown efficacy in neutralizing acidity and retaining metals [...] Read more.
Traditional mining activities in Zaruma-Portovelo (SE Ecuador) have led to high concentrations of pollutants in the Puyango River due to acid mine drainage (AMD) from abandoned waste. Dispersed alkaline substrate (DAS) passive treatment systems have shown efficacy in neutralizing acidity and retaining metals and sulfates in acidic waters, achieving near a 100% retention for Fe, Al, and Cu, over 70% for trace elements, and 25% for SO42−. However, significant solid residues are generated, requiring proper geochemical and mineralogical understanding for management. This study investigates the fractionation of elements in AMD precipitates. Results indicate that Fe3+ and Al3+ predominantly precipitate as low-crystallinity oxyhydroxysulfate minerals such as schwertmannite [Fe3+16(OHSO4)12–13O16·10–12H2O] and jarosite [KFe3+3(SO4)2(OH)6], which retain elements like As, Cr, Cu, Pb, and Zn through adsorption and co-precipitation processes. Sulfate removal occurs via salts like coquimbite [AlFe3(SO4)6(H2O)12·6H2O] and gypsum [CaSO4·2H2O]. Divalent metals are primarily removed through carbonate and bicarbonate phases, with minerals such as azurite [Cu(OH)2·2CuCO3], malachite [Cu2(CO3)(OH)2], rhodochrosite [MnCO3], and calcite [CaCO3]. Despite the effectiveness of DAS, leachates from the precipitates exceed regulatory thresholds for aquatic life protection, classifying them as hazardous and posing environmental risks. However, these residues offer opportunities for the recovery of valuable metals. Full article
(This article belongs to the Special Issue Environmental Pollution and Assessment in Mining Areas)
Show Figures

Graphical abstract

11 pages, 1566 KB  
Article
Waste Bauxite Residue Valorization as Trace Metal Sorbent: Application to Acid Mine Drainage Remediation
by Arnaud Gauthier, Brenda Omana, Fouad Amin and Philippe Le Coustumer
Water 2024, 16(22), 3255; https://doi.org/10.3390/w16223255 - 12 Nov 2024
Cited by 3 | Viewed by 2018
Abstract
With an output of more than two million tons of alumina per year, Venezuela is an important producer. As observed, this mining extraction activity generates a large number of by-products poorly valorized for many reasons (economic, technical, and due to environmental standards and [...] Read more.
With an output of more than two million tons of alumina per year, Venezuela is an important producer. As observed, this mining extraction activity generates a large number of by-products poorly valorized for many reasons (economic, technical, and due to environmental standards and regulations) Venezuela production generates wastes (more than 15 million of m3) called red muds, which are dumped in old lagoons near the Orinoco river or stored. This sludge has a high alkalinity (pH between 10 and 13) and a chemical composition containing some heavy metals (40 ppm Cr, 107 ppm La, 178 ppm Ce) that means it is considered environmentally problematic waste. However, their mineralogical, textural and structural characteristics make them adsorption materials. So, the aim of the study presented here was to investigate the sorption properties of these residues in the case of treatment of water from acid mine drainage. In fact, with an important reactive surface, their capacities to trap by adsorption trace elements such as cadmium, lead or zinc has been studied. Batch sorption tests revealed significant retention of contaminants such as Pb, Zn and As. These retention processes were interpreted using the Langmuir isotherm model. The promising first results indicate that the red mud named Venezuelan bauxite residue (VBR) reveals its great potential as a sorbent of inorganic pollutants. The sorption process is chemically dependent and efficient for certain pH and IS ranges. In addition, the material showed a strong affinity for the adsorption of arsenate (As5+). This was observed during post adsorption chemical speciation experiments, through the very high affinity of this element for the least mobile fractions, including oxyhydroxides mobile fractions, including Fe oxyhydroxides (amorphous). Nevertheless, these mining by-products could be considered as valuable absorbent materials. Despite this promising results, further studies are required to evaluate their potential in different conditions (dynamic tests, pH, IS, inorganic and organic contaminants, concentration and time effect). Full article
(This article belongs to the Special Issue Impact of Mining Activities on the Groundwater Resources)
Show Figures

Figure 1

16 pages, 24815 KB  
Article
Exploring Methane Capture Potential in Alkaline Coal Mine Drainage: Insight from the Microbial Community Structure and Function Analysis
by Yuan Li, Zhan Su, Wei Xiu, Lin Huang, Taiyu Huang and Jieming Zheng
Water 2024, 16(13), 1915; https://doi.org/10.3390/w16131915 - 4 Jul 2024
Viewed by 1720
Abstract
Alkaline coal mine drainage represents one of the most critical issues in the coal industry, driven by complex hydro-biogeochemical processes. However, the interplay of hydrogeochemical and biogeochemical interactions in alkaline coal mine drainage is still poorly understood. To this end, water samples were [...] Read more.
Alkaline coal mine drainage represents one of the most critical issues in the coal industry, driven by complex hydro-biogeochemical processes. However, the interplay of hydrogeochemical and biogeochemical interactions in alkaline coal mine drainage is still poorly understood. To this end, water samples were systematically collected from alkaline coal mine drainage sites from five coal mining areas in Chongqing coal mining district, located in southwestern China. Hydrogeochemical analyses showed that the main water type of the coal mine drainage sample was HCO3-SO4~K-Na, which primarily originated from local meteoric water. The microbial community compositions in the studied alkaline coal drainage were critically associated with sulfate, bicarbonate, DOC, nitrate, and pH, and linked to three putative keystone genera via network analysis (Thiothrix, Methylophilaceae_MM1, and an unclassified genus from Comamonadaceae family). Functional predictions from FAPROTAX suggested a high abundance of metabolic pathways involving the oxidation of sulfide and sulfur compounds, potentially underscoring their importance in controlling sulfate enrichment in alkaline coal mine drainage. Interestingly, members of the Methylomonadaceae family (methanotrophs) and the Methylotenera genus (methylotrophs) had positive Spearman correlations with both ammonium and sulfate, potentially inferring that the enhanced activities of methanotrophs might help capture methane in the alkaline coal mine drainage. This study further enhances our comprehension of the intricate interplay between hydrogeochemical and biogeochemical interactions in alkaline coal mine drainage, contributing to the carbon budget. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Graphical abstract

22 pages, 755 KB  
Review
A Comprehensive Review on Mine Tailings as a Raw Material in the Alkali Activation Process
by Hamid Reza Manaviparast, Tiago Miranda, Eduardo Pereira and Nuno Cristelo
Appl. Sci. 2024, 14(12), 5127; https://doi.org/10.3390/app14125127 - 12 Jun 2024
Cited by 15 | Viewed by 7199
Abstract
The mining industry generates vast quantities of mine tailings on an annual basis. However, due to their limited economic value, a significant portion of these tailings are deposited close to mining sites, often underwater. The principal environmental apprehensions associated with mine tailings revolve [...] Read more.
The mining industry generates vast quantities of mine tailings on an annual basis. However, due to their limited economic value, a significant portion of these tailings are deposited close to mining sites, often underwater. The principal environmental apprehensions associated with mine tailings revolve around their elevated levels of heavy metals and sulfidic minerals. The oxidation of these sulfidic minerals can lead to the formation of acid mine drainage, which in turn releases heavy metals into nearby water systems. The effective management of tailing dams requires substantial financial investments for their construction and meticulous control. Consequently, a pressing need exists for stable, sustainable, and economically viable management approaches. One promising method for addressing mine tailings is through alkali activation, a technique that serves as a stabilization process. This approach yields robust, concrete-like structures by utilizing raw materials abundant in aluminum and silicon, which conveniently constitute the primary components of mining residues. This comprehensive review outlines the research on utilizing alkali activation for mine tailings. It delves into the reactivity and chemical attributes of diverse minerals. Numerous mine tailings exhibit an inadequate level of reactivity under alkaline conditions, so various pre-treatment methodologies and their impacts on mineralogy are meticulously explored. Full article
Show Figures

Figure 1

18 pages, 3129 KB  
Article
Optimization of Chitosan Synthesis Process Parameters to Enhance PES/Chitosan Membrane Performance for the Treatment of Acid Mine Drainage (AMD)
by Ndiwanga F. Rasifudi, Lukhanyo Mekuto and Machodi J. Mathaba
Materials 2024, 17(11), 2562; https://doi.org/10.3390/ma17112562 - 26 May 2024
Cited by 4 | Viewed by 2032
Abstract
Acid mine drainage (AMD) is an environmental issue linked with mining activities, causing the release of toxic water from mining areas. Polyethersulphone (PES) membranes are explored for AMD treatment, but their limited hydrophilicity hinders their performance. Chitosan enhances hydrophilicity, addressing this issue. However, [...] Read more.
Acid mine drainage (AMD) is an environmental issue linked with mining activities, causing the release of toxic water from mining areas. Polyethersulphone (PES) membranes are explored for AMD treatment, but their limited hydrophilicity hinders their performance. Chitosan enhances hydrophilicity, addressing this issue. However, the effectiveness depends on chitosan’s degree of deacetylation (DD), determined during the deacetylation process for chitosan production. This study optimized the chitin deacetylation temperature, alkaline (NaOH) concentration, and reaction time, yielding the highest chitosan degree of deacetylation (DD) for PES/chitosan membrane applications. Prior research has shown that high DD chitosan enhances membrane antifouling and hydrophilicity, increasing contaminant rejection and permeate flux. Evaluation of the best deacetylation conditions in terms of temperature (80, 100, 120 °C), NaOH concentration (20, 40, 60 wt.%), and time (2, 4, 6 h) was performed. The highest chitosan DD obtained was 87.11% at 80 °C, 40 wt. %NaOH at 4 h of chitin deacetylation. The PES/0.75 chitosan membrane (87.11%DD) showed an increase in surface hydrophilicity (63.62° contact angle) as compared to the pristine PES membrane (72.83° contact angle). This was an indicated improvement in membrane performance. Thus, presumably leading to high contaminant rejection and permeate flux in the AMD treatment context, postulate to literature. Full article
Show Figures

Figure 1

13 pages, 2502 KB  
Article
Alkaline Chemical Neutralization to Treat Acid Mine Drainage with High Concentrations of Iron and Manganese
by Pingping Zhao, Ruiming Zhang and Mengdi Hu
Water 2024, 16(6), 821; https://doi.org/10.3390/w16060821 - 12 Mar 2024
Cited by 13 | Viewed by 6870
Abstract
Due to its high acidity and toxic metal content, acid mine drainage (AMD) needs to be properly treated before being discharged into the environment. This study took the AMD collected from one specific mine in China as a sample and investigated the treatment [...] Read more.
Due to its high acidity and toxic metal content, acid mine drainage (AMD) needs to be properly treated before being discharged into the environment. This study took the AMD collected from one specific mine in China as a sample and investigated the treatment methodology for AMD. The water quality of the AMD was measured, and the sample was treated with caustic soda (NaOH) and shell powder (one kind of conventional neutralizer, mainly composed of CaCO3) by the neutralization method. The results show that the AMD has a relatively low pH (2.16) and contains high concentrations of Fe (77.54 g/L), Mn (621.29 mg/L), Cu (6.54 mg/L), Ca (12.39 mg/L), and Mg (55.04 mg/L). NaOH was an effective neutralizer to treat the AMD and performed much better than shell powder. Various metals were precipitated, in the order of Fe(III), Cu, Fe(II), Mn, Ca, and Mg. The metal removal mechanisms included precipitation, adsorption, and co-precipitation. The optimal reaction conditions were the reaction duration was selected as 5 min and the mass ratio of NaOH to AMD was 0.16:1 (w:v). By this stage, the pH rapidly increased from 2.16 to 8.53 during AMD-NaOH interactions and various metals were efficiently removed (from 86.71% to 99.99%) by NaOH. The residual mass concentrations of Fe, Mn, Cu, Ca, and Mg after the treatment were 1.52, 1.77, 0.10, 1.65, and 2.17 mg/L, respectively. These data revealed that NaOH was a good treatment regent for this kind of AMD, based on the discharge criteria of China (GB28661 2012). Also, the shell powder was a helpful neutralizer for pH adjustment and copper removal. This neutralization method has the advantages of convenient operation, high speed, good effect, simple equipment, and low infrastructure cost. In addition, the resulting neutralized residue is a valuable and high-quality raw material, which can be used in metal smelting and separation. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification)
Show Figures

Figure 1

32 pages, 9751 KB  
Article
Stream Chemistry and Forest Recovery Assessment and Prediction Modeling in Coal-Mine-Affected Watersheds in Kentucky, USA
by Oguz Sariyildiz, Buddhi R. Gyawali, George F. Antonious, Kenneth Semmens, Demetrio Zourarakis and Maya P. Bhatt
Environments 2024, 11(3), 40; https://doi.org/10.3390/environments11030040 - 21 Feb 2024
Cited by 2 | Viewed by 3110
Abstract
Kentucky is one of the largest coal-producing states; surface coal mining has led to changes in natural land cover, soil loss, and water quality. This study explored relationships between actively mined and reclaimed areas, vegetation change, and water quality parameters. The study site [...] Read more.
Kentucky is one of the largest coal-producing states; surface coal mining has led to changes in natural land cover, soil loss, and water quality. This study explored relationships between actively mined and reclaimed areas, vegetation change, and water quality parameters. The study site evaluated 58 watersheds with Landsat-derived variables (reclamation age and percentage of mining, reclaimed forest, and reclaimed woods) as well as topographic variables (such as elevation, slope, drainage density, and infiltration). Water samples were collected in spring (n = 9), summer (n = 14), and fall (n = 58) 2017 to study changes in water quality variables (SO42−, alkalinity, conductivity, Ca2+, Mg2+, Mn2+, Al3+, and Fe2+, Fe3+) in response to changes in land cover. Pearson correlation analyses indicated that conductivity has strong to very strong relationships with water quality variables related to coal mining (except Al3+, Fe2+, Fe3+, Mn2+, elevation, slope, and drainage density) and land cover variables. In addition, separate regression analyses were performed, with conductivity values based on samples collected in the fall. First, conductivity responses to mining percentage, reclamation age and topographic variables were examined (adjusted R2 = 0.818, p < 0.01). Next, vegetation cover change parameters were added to the same model, which yielded slightly improved R2 (adjusted R2 = 0.826, p < 0.01). Finally, reclamation age and mining percentages were used to explain the quantity of reclaimed forested areas as a percentage of watersheds. The model was significant (p < 0.01), with an adjusted R2 value of 0.641. Results suggest that the quantity (area as a percentage) of reclaimed forests may be a predictor of the mining percentage and reclamation age. This study indicated that conductivity is a predictable water quality indicator that is highly associated with Coal-Mine-Related Stream Chemistry in areas where agriculture and urban development are limited. Water quality is not suitable for various purposes due to the presence of contaminants, especially in mined sites. These findings may help the scientific community and key state and federal agencies improve their understanding of water quality attributes in watersheds affected by coal mining, as well as refine land reclamation practices more effectively while such practices are in action. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water)
Show Figures

Figure 1

20 pages, 14427 KB  
Article
Leaching Behavior of As and Pb in Lead–Zinc Mining Waste Rock under Mine Drainage and Rainwater
by Ziwen Guo, Jiejie Yang, Kewei Li, Jiaxin Shi, Yulong Peng, Emmanuel Konadu Sarkodie, Bo Miao, Hongwei Liu, Xueduan Liu and Luhua Jiang
Toxics 2023, 11(11), 943; https://doi.org/10.3390/toxics11110943 - 20 Nov 2023
Cited by 9 | Viewed by 2981
Abstract
At present, the pollution of arsenic (As) and lead (Pb) is becoming increasingly serious. The pollution caused by the release of As and Pb from lead–zinc mines has seriously affected the water and soil environment and threatened human health. It is necessary to [...] Read more.
At present, the pollution of arsenic (As) and lead (Pb) is becoming increasingly serious. The pollution caused by the release of As and Pb from lead–zinc mines has seriously affected the water and soil environment and threatened human health. It is necessary to reveal the release characteristics of As and Pb. The actual scene of mine drainage (MD) and rainwater (RW) leaching waste rocks is the one of the main reasons for the release of As and Pb. However, the leaching behavior of As and Pb in these waste rocks under MD and RW suffered from a lack of in-depth research. In this study, we investigated the occurrence of As and Pb in waste rocks (S1–S6) by using X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), and then, the changes in As and Pb concentration and the hydrochemical parameter in leaching solution were systematically studied. Furthermore, the correlation between the release of As and Pb and mineral composition was also evaluated. Results showed that these waste rocks were mainly composed of carbonate and sulfide minerals. As and Pb were mainly bounded or associated with sulfide minerals such as arsenopyrite, pyrite, chalcopyrite, and galena in these waste rocks, and small parts of As and Pb were absorbed or encased by clay minerals such as kaolinite and chlorite. Under MD and RW leaching, the pH, redox potential (Eh), and electric conductivity (EC) of each waste rock tended to be consistent due to their buffering ability; the leachate pH of waste rocks with more carbonate minerals was higher than that of sulfide minerals. Both As and Pb were released most under MD leaching in comparison to RW, reaching 6.57 and 60.32 mg/kg, respectively, due to MD’s low pH and high Eh value. However, As in waste rock released more under alkaline conditions because part of the arsenic was in the form of arsenate. As and Pb release were mainly positively correlated with the proportions of sulfide minerals in these waste rocks. MD leaching significantly promoted the release of As and Pb from waste rocks, which would cause a great threat to the surrounding environment, and control measures were imperative. This paper not only reveals the As and Pb pollution mechanism around the lead–zinc mining area but also provides a theoretical basis for the prevention and control of As and Pb pollution in the future. Full article
Show Figures

Figure 1

35 pages, 5497 KB  
Review
Permeable Concrete Barriers to Control Water Pollution: A Review
by Rehab O. Abdel Rahman, Ahmed M. El-Kamash and Yung-Tse Hung
Water 2023, 15(21), 3867; https://doi.org/10.3390/w15213867 - 6 Nov 2023
Cited by 10 | Viewed by 5794
Abstract
Permeable concrete is a class of materials that has long been tested and implemented to control water pollution. Its application in low-impact development practices has proved its efficiency in mitigating some of the impacts of urbanization on the environment, including urban heat islands, [...] Read more.
Permeable concrete is a class of materials that has long been tested and implemented to control water pollution. Its application in low-impact development practices has proved its efficiency in mitigating some of the impacts of urbanization on the environment, including urban heat islands, attenuation of flashfloods, and reduction of transportation-related noise. Additionally, several research efforts have been directed at the dissemination of these materials for controlling pollution via their use as permeable reactive barriers, as well as their use in the treatment of waste water and water purification. This work is focused on the potential use of these materials as permeable reactive barriers to remediate ground water and treat acid mine drainage. In this respect, advances in material selection and their proportions in the mix design of conventional and innovative permeable concrete are presented. An overview of the available characterization techniques to evaluate the rheology of the paste, hydraulic, mechanical, durability, and pollutant removal performances of the hardened material are presented and their features are summarized. An overview of permeable reactive barrier technology is provided, recent research on the application of permeable concrete technology is analyzed, and gaps and recommendations for future research directions in this field are identified. The optimization of the mix design of permeable reactive concrete barriers is recommended to be directed in a way that balances the performance measures and the durability of the barrier over its service life. As these materials are proposed to control water pollution, there is a need to ensure that this practice has minimal environmental impacts on the affected environment. This can be achieved by considering the analysis of the alkaline plume attenuation in the downstream environment. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment III)
Show Figures

Figure 1

22 pages, 5046 KB  
Article
Performance Assessment of Wood Ash and Bone Char for Manganese Treatment in Acid Mine Drainage
by Ivana Smičiklas, Bojan Janković, Mihajlo Jović, Jelena Maletaškić, Nebojša Manić and Snežana Dragović
Metals 2023, 13(10), 1665; https://doi.org/10.3390/met13101665 - 28 Sep 2023
Cited by 2 | Viewed by 2493
Abstract
Developing efficient methods for Mn separation is the most challenging in exploring innovative and sustainable acid mine drainage (AMD) treatments. The availability and capacity of certain waste materials for Mn removal warrant further exploration of their performance regarding the effect of process factors. [...] Read more.
Developing efficient methods for Mn separation is the most challenging in exploring innovative and sustainable acid mine drainage (AMD) treatments. The availability and capacity of certain waste materials for Mn removal warrant further exploration of their performance regarding the effect of process factors. This study addressed the influence of AMD chemistry (initial pH and concentrations of Mn, sulfate, and Fe), the solid/solution ratio, and the contact time on Mn separation by wood ash (WA) and bone char (BC). At an equivalent dose, WA displayed higher neutralization and Mn removal capacity over the initial pH range of 2.5–6.0 due to lime, dicalcium silicate, and fairchildite dissolution. On the other hand, at optimal doses, Mn separation by BC was faster, it was less affected by coexisting sulfate and Fe(II) species, and the carbonated hydroxyapatite structure of BC remained preserved. Efficient removal of Mn was feasible only at final pH values ≥ 9.0 in all systems with WA and at pH 6.0–6.4 using BC. These conclusions were confirmed by treating actual AMD with variable doses of both materials. The water-leaching potential of toxic elements from the AMD/BC treatment residue complied with the limits for inert waste. In contrast, the residue of AMD/WA treatment leached non-toxic quantities of Cr and substantial amounts of Al due to high residual alkalinity. To minimize the amount of secondary waste generated by BC application, its use emerges particularly beneficial after AMD neutralization in the finishing step intended for Mn removal. Full article
(This article belongs to the Special Issue Advanced Sorbents for Separation of Metal Ions)
Show Figures

Figure 1

19 pages, 12679 KB  
Article
Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China
by Dongping Deng, Yong Wu, Bangzheng Ren and Heng Yin
Water 2023, 15(7), 1421; https://doi.org/10.3390/w15071421 - 6 Apr 2023
Cited by 1 | Viewed by 2752
Abstract
In this study, groundwater, stream water, and stream sediment samples were collected from a coal mine area in Dazhu, Southwestern China, and hydrogeochemical, multivariate, and X-ray analyses were conducted to examine the effects of coal mine pollution. The groundwater and stream samples were [...] Read more.
In this study, groundwater, stream water, and stream sediment samples were collected from a coal mine area in Dazhu, Southwestern China, and hydrogeochemical, multivariate, and X-ray analyses were conducted to examine the effects of coal mine pollution. The groundwater and stream samples were slightly acidic to alkaline (6.7 to 8.2). Typically, the water samples were dominated by Ca2+ + Mg2+–HCO3 and Ca2+ + Mg2+–Cl. SO42− originates from gypsum dissolution and pyrite oxidation, and Ca2+ and Mg2+ may be related to the dissolution of carbonate. According to the Chinese standard and World Health Organization guidelines, the water in the coal mine area is of good quality in terms of its physical and chemical properties, except for the concentration of Mn and Fe, with values of 1925.14 μg/L and 12,872.88 μg/L, respectively. A principal component analysis revealed two groups in which the concentration of metals and metalloids in stream sediments are affected by the coal mine drainage. The Mn and Fe average concentration in the downstream Kongjiagou drain sediment samples was 2035.1 ppm and 6%, respectively. These values were higher than the average Mn and Fe concentration in Xiaojiagou at 453.1 ppm and 2.9%, respectively. Both the Mn and Fe concentration were higher than the background values (640 ppm and 4.4%). Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 2712 KB  
Article
Sustainable Co-Management of Acid Mine Drainage with Struvite Synthesis Effluent: Pragmatic Synergies in Circular Economy
by Vhahangwele Masindi, Ryneth Mbhele and Spyros Foteinis
Environments 2023, 10(4), 60; https://doi.org/10.3390/environments10040060 - 4 Apr 2023
Cited by 3 | Viewed by 3665
Abstract
Herein, the alkaline supernatant of a struvite recovery system from municipal wastewater was successfully co-managed with acid mine drainage (AMD). Various ratios (v/v) of AMD to struvite supernatant were examined, and the quality of the passively co-treated effluent and [...] Read more.
Herein, the alkaline supernatant of a struvite recovery system from municipal wastewater was successfully co-managed with acid mine drainage (AMD). Various ratios (v/v) of AMD to struvite supernatant were examined, and the quality of the passively co-treated effluent and of the generated sludge were examined using state-of-the-art analytical techniques including ICP-OES, FE-SEM/FIB/EDX, XRD, XRF, and FTIR. The optimum ratio was 1:9, where metals and sulphate were largely removed from AMD, i.e., from higher to lower score Fe (~100%) ≥ Pb (~100%) ≥ Ni (99.6%) ≥ Cu (96%) ≥ As (95%) ≥ Al (93.7%) ≥ Zn (92.7%) > Ca (90.5%) > Mn (90%) ≥ Cr (90%) > sulphate (88%) > Mg (85.7%), thus implying that opportunities for mineral recovery could be pursued. The pH of the final effluent was regulated to acceptable discharge levels, i.e., 6.5 instead of 2.2 (AMD) and 10.5 (struvite supernatant), while a notable reduction in the electrical conductivity further implied the attenuation of contaminants. Overall, results suggest the feasibility of the passive co-treatment of these wastewater matrices and that opportunities for direct scaling up exist (e.g., using waste stabilization ponds). Furthermore, apart from the initial recovery of struvite from municipal wastewater, metals could also be recovered from AMD and water could be reclaimed, therefore introducing circular economy and zero liquid discharge in wastewater treatment and management. Full article
Show Figures

Figure 1

Back to TopTop