Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = aircraft conceptual design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7636 KiB  
Article
Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL
by Qingsong Liu, Gan Ren, Dingfu Zhou, Bo Liu and Zida Li
Appl. Sci. 2025, 15(15), 8336; https://doi.org/10.3390/app15158336 - 26 Jul 2025
Viewed by 219
Abstract
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating [...] Read more.
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating computational fluid dynamics (CFD), backpropagation (BP) neural network, and Doppler wind lidar (DWL). Firstly, taking the conceptual design aircraft carrier model as the research object, CFD numerical simulations of the ship airwake within the glide path region are carried out using the Poly-Hexcore grid and the detached eddy simulation (DES)/the Reynolds-averaged Navier–Stokes (RANS) turbulence models. Then, using the high spatial resolution ship airwake along the glide path obtained from steady RANS computations under different inflow conditions as a sample dataset, the BP neural network prediction models were trained and optimized. Along the ideal glide path within 200 m behind the stern, the correlation coefficients between the predicted results of the BP neural network and the headwind, crosswind, and vertical wind of the testing samples exceeded 0.95, 0.91, and 0.82, respectively. Finally, using the inflow speed and direction with high temporal resolution from the bow direction obtained by the shipborne DWL as input, the BP prediction models can achieve accurate prediction of the 3D ship airwake along the glide path with high spatiotemporal resolution (3 m, 3 Hz). Full article
Show Figures

Figure 1

8 pages, 1503 KiB  
Proceeding Paper
A Wind Tunnel Study of the Aerodynamic Characteristics of Wings with Arc-Shaped Wingtips
by Stanimir Penchev and Hristian Panayotov
Eng. Proc. 2025, 100(1), 28; https://doi.org/10.3390/engproc2025100028 - 11 Jul 2025
Viewed by 163
Abstract
Wingtip devices like winglets and other types have been created to improve the aerodynamic efficiency of aircraft based on minimizing the induced drag of tip vortices. This study aims to investigate the aerodynamic characteristics of these devices at low Reynolds numbers. In the [...] Read more.
Wingtip devices like winglets and other types have been created to improve the aerodynamic efficiency of aircraft based on minimizing the induced drag of tip vortices. This study aims to investigate the aerodynamic characteristics of these devices at low Reynolds numbers. In the present study, the models of a basic non-swept tapered wing and a wing with arc-shaped wingtips are examined. For this purpose, the basic model is equipped with replaceable tips with different geometries. The measurements are performed in a low-speed wind tunnel at a Reynolds number of around 100,000. The analysis of the collected data shows that the best aerodynamic characteristics have a configuration with a 45-degree dihedral angle at the tips of the wing. These results can be used in the conceptual design of small unmanned aerial vehicles (UAVs) to improve their performance in terms of range and endurance. Full article
Show Figures

Figure 1

21 pages, 4275 KiB  
Article
Novel Hybrid Aquatic–Aerial Vehicle to Survey in High Sea States: Initial Flow Dynamics on Dive and Breach
by Matthew J. Ericksen, Keith F. Joiner, Nicholas J. Lawson, Andrew Truslove, Georgia Warren, Jisheng Zhao and Ahmed Swidan
J. Mar. Sci. Eng. 2025, 13(7), 1283; https://doi.org/10.3390/jmse13071283 - 30 Jun 2025
Viewed by 358
Abstract
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive [...] Read more.
Few studies have examined Hybrid Aquatic–Aerial Vehicles (HAAVs), autonomous vehicles designed to operate in both air and water, especially those that are aircraft-launched and recovered, with a variable-sweep design to free dive into a body of water and breach under buoyant and propulsive force to re-achieve flight. The novel design research examines the viability of a recoverable sonar-search child aircraft for maritime patrol, one which can overcome the prohibitive sea state limitations of all current HAAV designs in the research literature. This paper reports on the analysis from computational fluid dynamic (CFD) simulations of such an HAAV diving into static seawater at low speeds due to the reverse thrust of two retractable electric-ducted fans (EDFs) and its subsequent breach back into flight initially using a fast buoyancy engine developed for deep-sea research vessels. The HAAV model entered the water column at speeds around 10 ms−1 and exited at 5 ms−1 under various buoyancy cases, normal to the surface. Results revealed that impact force magnitudes varied with entry speed and were more acute according to vehicle mass, while a sufficient portion of the fuselage was able to clear typical wave heights during its breach for its EDF propulsors and wings to protract unhindered. Examining the medium transition dynamics of such a novel HAAV has provided insight into the structural, propulsive, buoyancy, and control requirements for future conceptual design iterations. Research is now focused on validating these unperturbed CFD dive and breach cases with pool experiments before then parametrically and numerically examining the effects of realistic ocean sea states. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 3758 KiB  
Article
A Numerical Approach for the Integration of Sonic Boom Requirements into the Matching Chart
by Samuele Graziani, Leonardo Ialongo and Davide Ferretto
Aerospace 2025, 12(7), 566; https://doi.org/10.3390/aerospace12070566 - 21 Jun 2025
Viewed by 447
Abstract
The Matching Chart is a well-established tool in conceptual and preliminary aircraft design, providing a graphical representation of performance requirements based on wing loading (W/S) and thrust-to-weight ratio (T/W). It helps define a feasible design space while estimating key parameters such as thrust, [...] Read more.
The Matching Chart is a well-established tool in conceptual and preliminary aircraft design, providing a graphical representation of performance requirements based on wing loading (W/S) and thrust-to-weight ratio (T/W). It helps define a feasible design space while estimating key parameters such as thrust, maximum takeoff weight, and wing area. This paper presents a new numerical approach aimed at incorporating constraints related to sonic boom generated by supersonic aircraft in flight within the Matching Chart. The sonic boom constraint is derived from high-fidelity CFD simulations on similar case studies and atmospheric propagation models within a non-uniform atmosphere. The methodology is evaluated on an 80-passenger, Mach 1.5 aircraft, a configuration aligned with recent industry research. By integrating environmental and regulatory factors, this work enhances the Matching Chart’s applicability to enable more sustainable future supersonic aircraft design. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 5989 KiB  
Article
Risk Analysis Method of Aviation Critical System Based on Bayesian Networks and Empirical Information Fusion
by Xiangjun Dang, Yongxuan Shao, Haoming Liu, Zhe Yang, Mingwen Zhong, Maohua Sun and Wu Deng
Electronics 2025, 14(12), 2496; https://doi.org/10.3390/electronics14122496 - 19 Jun 2025
Viewed by 303
Abstract
The intrinsic hazards associated with high-pressure hydrogen, combined with electromechanical interactions in hybrid architectures, pose significant challenges in predicting potential system risks during the conceptual design phase. In this paper, a risk analysis methodology integrating systems theoretic process analysis (STPA), D-S evidence theory, [...] Read more.
The intrinsic hazards associated with high-pressure hydrogen, combined with electromechanical interactions in hybrid architectures, pose significant challenges in predicting potential system risks during the conceptual design phase. In this paper, a risk analysis methodology integrating systems theoretic process analysis (STPA), D-S evidence theory, and Bayesian networks (BN) is established. The approach employs STPA to identify unsafe control actions and analyze their loss scenarios. Subsequently, D-S evidence theory quantifies the likelihood of risk factors, while the BN model’s nodal uncertainties to construct a risk network identifying critical risk-inducing events. This methodology provides a comprehensive risk analysis process that identifies systemic risk elements, quantifies risk probabilities, and incorporates uncertainties for quantitative risk assessment. These insights inform risk-averse design decisions for hydrogen–electric hybrid powered aircraft. A case study demonstrates the framework’s effectiveness. The approach bridges theoretical risk analysis with early-stage engineering practice, delivering actionable guidance for advancing zero-emission aviation. Full article
Show Figures

Figure 1

35 pages, 6410 KiB  
Article
Conceptual Design of a Low-Cost Class-III Turbofan-Based UCAV Loyal Wingman
by Savvas Roussos, Eleftherios Karatzas, Vassilios Kostopoulos and Vaios Lappas
Aerospace 2025, 12(6), 556; https://doi.org/10.3390/aerospace12060556 - 18 Jun 2025
Viewed by 617
Abstract
The rapid evolution of military technology has led to an increased interest in Unmanned Combat Aerial Vehicles (UCAVs). This research focuses on the conceptual design of a low-cost, turbofan-powered UCAV, specifically a Class-III aircraft as defined by NATO classification (STANAG 4670), with a [...] Read more.
The rapid evolution of military technology has led to an increased interest in Unmanned Combat Aerial Vehicles (UCAVs). This research focuses on the conceptual design of a low-cost, turbofan-powered UCAV, specifically a Class-III aircraft as defined by NATO classification (STANAG 4670), with a target take-off weight of approximately one tonne. The study adopts a “from scratch” design approach, recognizing the limitations of existing data and the potential for scaling errors. This approach involves a meticulous design process that includes the development of precise requirements, weight estimations, and iterative optimization of the aircraft layout to ensure aerodynamic efficiency and operational functionality. A key element of this conceptual design is its focus on a low-cost profile, achieved through the adoption of a simplified structural layout, and the integration of off-the-shelf components where possible. The design process involves an iterative approach, beginning with fundamental requirements and progressing through the detailed development of individual components and their integration into a cohesive aircraft. The study details the selection of an existing and operational engine due to its power output. The design and analysis of the wing, fuselage, and V-tail configuration are presented, incorporating considerations for aerodynamic efficiency, stability, weight estimation, and internal component layout. The study concludes by outlining recommendations for future work, including high-fidelity CFD simulations, structural analysis, and the integration of advanced electronic systems and AI capabilities essential for the Loyal Wingman concept. Full article
(This article belongs to the Special Issue UAV System Modelling Design and Simulation)
Show Figures

Figure 1

21 pages, 724 KiB  
Article
A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft
by Manuel Filipe, Frederico Afonso and Afzal Suleman
Energies 2025, 18(12), 3074; https://doi.org/10.3390/en18123074 - 11 Jun 2025
Viewed by 736
Abstract
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells, which will be studied at three technological levels, and batteries, also studied for four hybridization factors [...] Read more.
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells, which will be studied at three technological levels, and batteries, also studied for four hybridization factors (X = 0, 0.05, 0.10, 0.20). Hydrogen can absorb great thermal loads since it is stored in the tank at cryogenic temperatures and is used as fuel in the fuel cells at around 80 °C. Taking advantage of this characteristic, two thermal management system (TMS) architectures were developed to ensure the proper functioning of the aircraft during the designated mission: A1, which includes a vapor compression system (VCS), and A2, which omits it for a simpler design. The models were developed in MATLAB® and consist of different components and technologies commonly used in such systems. The analysis reveals that A2, due to the exclusion of the VCS, outperformed A1 in weight (10–23% reduction), energy consumption, and drag. A1’s TMS required significantly more energy due to the VCS compressor. Hybridization with batteries increased system weight substantially (up to 37% in A2) and had a greater impact on energy consumption in A2 due to additional fan work. Hydrogen’s heat sink capacity remained underutilized, and the hydrogen tank was deemed suitable for a non-integral fuselage design. A2 had the lowest emissions (10–20% lower than A1 for X = 0), but hybridization negated these benefits, significantly increasing emissions in pessimistic scenarios. Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

17 pages, 1635 KiB  
Article
The Conceptual Design of a Variable Camber Wing
by Spencer Troy P. Cortez, Seksan Winyangkul and Suwin Sleesongsom
Biomimetics 2025, 10(6), 353; https://doi.org/10.3390/biomimetics10060353 - 1 Jun 2025
Viewed by 509
Abstract
The variable camber wing (VCW) is a morphing wing design anticipated to enhance unmanned aerial vehicles’ (UAVs’) performance in flight through continuously changing shape. The performance of VCWs has been proven, but techniques for their integration, including aerodynamic analysis, mechanism synthesis, and structural [...] Read more.
The variable camber wing (VCW) is a morphing wing design anticipated to enhance unmanned aerial vehicles’ (UAVs’) performance in flight through continuously changing shape. The performance of VCWs has been proven, but techniques for their integration, including aerodynamic analysis, mechanism synthesis, and structural tests, still lag in development at the conceptual design stage. Therefore, this research focuses on designing a variable camber wing, a key area for the advancement of morphing aircraft. Inspired by the high-lift capabilities of traditional aircraft devices but aiming for smoother airflow through continuous shape alteration, this research proposes a novel three-step design for a structurally integrated VCW. This approach begins with a critical aerodynamic analysis to determine wing shape adaptations across various flight conditions, followed by a mechanism synthesis phase to design a four-bar linkage that accurately approximates the desired trailing edge deflections by utilizing a variant of teaching–learning-based optimization. The objective is to minimize error between the intended and actual coupler link while adhering to design constraints for proper integration in the wing structure. Finally, structural analysis evaluates the skin’s ability to withstand operational loads and ensure the integrity of the VCW system. The design result demonstrates the success of this three-step approach to synthesizing a VCW mechanism that meets the defined aerodynamic (actual deflection of 9.1764°) and structural targets (maximum Von Mises stress of 81.5 MPa and maximum deflection of 0.073 m), paving the way for enhanced aircraft performance. Full article
Show Figures

Figure 1

19 pages, 2666 KiB  
Article
Conceptual Design and Analysis of a Trans-Domain Aircraft Based on the Camber Morphing Wing
by Mingzhen Wang, Mingxuan Xu, Xing Shen, Zhenyang Lai, Yan Zhao, Chen Wang and Qi Hu
Machines 2025, 13(5), 428; https://doi.org/10.3390/machines13050428 - 19 May 2025
Viewed by 470
Abstract
Multi-functionality and high mission adaptability are important trends in the development of future aircrafts. Trans-domain aircraft, with their unique take-off and landing capabilities and cross-medium capability, have significant potential in the field of emergency rescue, marine monitoring and tourism. Trans-domain aircraft will meet [...] Read more.
Multi-functionality and high mission adaptability are important trends in the development of future aircrafts. Trans-domain aircraft, with their unique take-off and landing capabilities and cross-medium capability, have significant potential in the field of emergency rescue, marine monitoring and tourism. Trans-domain aircraft will meet various flight conditions in different domains. Therefore, the design of wing structures must consider the mechanical effects of different media on the aircraft. In the current study, a fishbone variable camber wing is proposed based on the concept of a camber morphing wing. The relationship between the actuation force and the trailing edge deflection is analyzed using the fluid–structure interaction. The flight performance of the flight conditions including cruise or climb underneath and cruise above the water can also be evaluated in the design iteration since the load-carrying capability can be satisfied and the structural deformation of the fluid loads and the actuators is taken into account. Finite element analysis is also employed for the structural verification. Finally, a structural model is manufactured, which is tested above and under water by measuring the trailing edge deflection using the digital image correlation technology. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

12 pages, 2401 KiB  
Proceeding Paper
Winglet Design for Class I Mini UAV—Aerodynamic and Performance Optimization
by Eleftherios Nikolaou, Eleftherios Karatzas, Spyridon Kilimtzidis and Vassilis Kostopoulos
Eng. Proc. 2025, 90(1), 111; https://doi.org/10.3390/engproc2025090111 - 7 May 2025
Viewed by 449
Abstract
The aerodynamic performance of an aircraft can be enhanced by incorporating wingtip devices, or winglets, which primarily reduce lift-induced drag created by wingtip vortices. This study outlines an optimization procedure for implementing winglets on a Class I fixed-wing mini-UAV to maximize aerodynamic efficiency [...] Read more.
The aerodynamic performance of an aircraft can be enhanced by incorporating wingtip devices, or winglets, which primarily reduce lift-induced drag created by wingtip vortices. This study outlines an optimization procedure for implementing winglets on a Class I fixed-wing mini-UAV to maximize aerodynamic efficiency and performance. After the Conceptual and Preliminary design phases, a baseline UAV was developed without winglets, adhering to specific layout constraints (e.g., wingspan, length). Various winglet designs—plate and blended types with differing heights, cant angles, and sweep angles—were then created and assessed. A Computational Fluid Dynamics (CFD) analysis was conducted to evaluate the flow around both the winglet-free UAV and configurations with each winglet design. The simulations employed Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the Spalart-Allmaras turbulence model, targeting the optimal winglet configuration for enhanced aerodynamic characteristics during cruise. Charts of lift, drag, pitching moment coefficients, and lift-to-drag ratios are presented, alongside flow contours illustrating vortex characteristics for both baseline and optimized configurations. Additionally, dynamic stability analyses examined how winglets impact the UAV’s stability and control. The results demonstrated a significant improvement in aerodynamic coefficients (CLmax, L/Dmax, CLa, Cma), leading to an increase in both range and endurance. Full article
Show Figures

Figure 1

25 pages, 10082 KiB  
Article
Preliminary Design of a Tandem-Wing Unmanned Aerial System
by Alejandro Sanchez-Carmona, Daniel del Río Velilla, Antonio Fernández López and Cristina Cuerno-Rejado
Aerospace 2025, 12(5), 363; https://doi.org/10.3390/aerospace12050363 - 22 Apr 2025
Viewed by 965
Abstract
The drone industry is continuously growing. The regulatory framework that allows these aircraft to operate safely is gradually evolving, enabling missions with growing associated risks, although it is not progressing at the same speed as the industry itself. To provide certainty to regulators, [...] Read more.
The drone industry is continuously growing. The regulatory framework that allows these aircraft to operate safely is gradually evolving, enabling missions with growing associated risks, although it is not progressing at the same speed as the industry itself. To provide certainty to regulators, it is necessary to employ design methodologies that are recognized in the aerospace industry. Therefore, in this work, we addressed the design and manufacturing of a lightweight unconventional-configuration unmanned aircraft by adapting widely known conceptual design methodologies from manned aviation from authors such as Torenbeek and Roskam. Manufacturing was carried out by combining new techniques for the use of composite materials with additive manufacturing. A wide variability in the results was identified across the different models used. However, taking the most restrictive estimates into account, the results show that the structural weight estimates of the wing, made using classical manned aviation methods, align with the final weight obtained, assuming the wing can withstand the aerodynamic and inertial loads applied within a certain safety margin. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

33 pages, 11917 KiB  
Article
Multi-Fidelity Surrogate-Assisted Aerodynamic Optimization of Aircraft Wings
by Eleftherios Nikolaou, Spyridon Kilimtzidis and Vassilis Kostopoulos
Aerospace 2025, 12(4), 359; https://doi.org/10.3390/aerospace12040359 - 20 Apr 2025
Viewed by 880
Abstract
This paper presents a multi-fidelity optimization procedure for aircraft wing design, implemented in the early stages of the aircraft design process. Since wing shape is a key factor that influences aerodynamic performance, having an accurate estimate of its efficiency at the conceptual design [...] Read more.
This paper presents a multi-fidelity optimization procedure for aircraft wing design, implemented in the early stages of the aircraft design process. Since wing shape is a key factor that influences aerodynamic performance, having an accurate estimate of its efficiency at the conceptual design phase is highly beneficial for aircraft designers. This study introduces a comprehensive optimization framework for designing the wing of a Class I fixed-wing mini-UAV with electric propulsion, focusing on maximizing aerodynamic efficiency and operational performance. Utilizing Class-Shape Transformation (CST) in combination with Surrogate-Based Optimization (SBO) techniques, the research first optimizes the airfoil shape to identify the most suitable airfoil for the UAV wing. Subsequently, SBO techniques are applied to generate wing geometries with varying characteristics, including aspect ratio (AR), taper ratio (λ), quarter-chord sweep angle (Λ0.25), and tip twist angle (ε). These geometries are then evaluated using both low- and high-fidelity aerodynamic simulations. The integration of SBO techniques enables an efficient exploration of the design space while minimizing the computational costs associated with iterative simulations. Specifically, the proposed SBO framework enhances the wing’s aerodynamic characteristics by optimizing the lift-to-drag ratio and reducing drag. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 3299 KiB  
Article
Non-Linear and Quasi-Linear Models for the Large-Amplitude Static Aeroelastic Response of Very-Flexible Slender Wings in Subsonic Flow at Low Speed
by Marco Berci
Aerospace 2025, 12(4), 294; https://doi.org/10.3390/aerospace12040294 - 31 Mar 2025
Viewed by 657
Abstract
In the framework of lightweight aircraft preliminary design and optimisation, different computational approaches are formulated and assessed for the large-amplitude static aeroelastic response of very-flexible slender thin wings in subsonic incompressible flow at low speed. Starting from either a continuous or a discrete [...] Read more.
In the framework of lightweight aircraft preliminary design and optimisation, different computational approaches are formulated and assessed for the large-amplitude static aeroelastic response of very-flexible slender thin wings in subsonic incompressible flow at low speed. Starting from either a continuous or a discrete model, either numerical or semi-analytical solutions are derived and compared for several combinations of flow speed and angle of attack. Exploiting the Euler–Bernoulli beam idealisation for the wing structure and its local deformation, non-linear and quasi-linear models are presented where the elastic axis is inextensible and its global displacement is geometrically nonlinear; to this purpose, Hencky’s model is also adopted. Employing modified strip theory for the airload, reduced-order conceptual assessments and parametric evaluations are possible, and the results are shown for the Pazy wing which exhibit excellent agreement with nonlinear higher-fidelity simulations in the literature. Both closed-loop and open-loop solutions are then provided, with the latter being readily resumed from the former in the low-speed limit far away from static aeroelastic divergence. In conclusion, the novel approaches hereby explored demonstrate overall consistency while offering both theoretical insights and practical recommendations for their trust region, especially in terms of the impact and importance of the linear and nonlinear features as well as their effects. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics)
Show Figures

Figure 1

19 pages, 10336 KiB  
Article
Trade-Off Conceptual Design of a Camber Morphing Flap for the Next Generation Hybrid Electrical Aircraft Across the HERWINGT Project
by Maria Chiara Noviello, Bernardino Galasso, Ignazio Dimino, Salvatore Ameduri and Antonio Concilio
Appl. Sci. 2025, 15(7), 3660; https://doi.org/10.3390/app15073660 - 26 Mar 2025
Viewed by 487
Abstract
Compliant wing morphing devices deal with controlled and smooth adaptation of the subcomponents’ shape to external conditions. Their structural stiffness distribution, typically resulting from an optimization design process, is tailored to ensure large deformations and sufficient robustness while preserving a given form under [...] Read more.
Compliant wing morphing devices deal with controlled and smooth adaptation of the subcomponents’ shape to external conditions. Their structural stiffness distribution, typically resulting from an optimization design process, is tailored to ensure large deformations and sufficient robustness while preserving a given form under the action of the aerodynamic loads and the internal force system. Within the European project HERWINGT (Hybrid Electric Regional Wing Integration Novel Green Technologies), supported by the Clean Aviation Joint Undertaking (CAJU), a compliant morphing flap (MF) concept has been developed by CIRA to implement adaptive capability for a strut-braced wing of the next generation Hybrid Electric Regional Aircraft. Its aim is to achieve remarkable high-lift performance improvement and related reduction of fuel consumption per flight. Specifically, the work focuses on the evolution of the conceptual architecture of the MF developed across the HERWINGT project, which was investigated in terms of preliminary design and has always accounted for actuation system integration aspects. A step-by-step design approach involving sensitivity finite elements analyses has been then carried out on two MF configurations; the technical outcomes resulting from the development of each of them have been critically analyzed and herein reported. Finally, justifications are provided for all the future adoptable engineering solutions. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

9 pages, 947 KiB  
Proceeding Paper
Solution Space Analysis for Robust Conceptual Design Solutions in Aeronautics
by Vladislav T. Todorov, Dmitry Rakov and Andreas Bardenhagen
Eng. Proc. 2025, 90(1), 60; https://doi.org/10.3390/engproc2025090060 - 17 Mar 2025
Viewed by 252
Abstract
The use of novel technologies for low-emission and more efficient aviation requires not only the achievement of a given technology readiness level, but also their integration into aircraft concepts. Furthermore, the assessment of unconventional configurations requires robustness considerations already in the conceptual aircraft [...] Read more.
The use of novel technologies for low-emission and more efficient aviation requires not only the achievement of a given technology readiness level, but also their integration into aircraft concepts. Furthermore, the assessment of unconventional configurations requires robustness considerations already in the conceptual aircraft design phase. In this context, the next developmental milestone of the Advanced Morphological Approach (AMA) as a conceptual aircraft design method is presented by introducing design parameter uncertainties for disruptive technologies. The purpose of this work is the integration verification of Bayesian networks (BNs) into the AMA process for semi-quantitative system modeling and uncertainty propagation. This allowed for the visualization of uncertainties in the solution space, and therefore the depiction and initial estimation of configuration robustness. The verification is demonstrated on an existing conceptual design use case of a regional aircraft for 50 passengers, similar to the ATR 42-600. It investigated hybrid-electric and fuel-cell-based hybrid propulsion systems for 2030, 2040, and 2050 as potential years of entry into service. A BN-based system model has been developed by verifying its quality, adding parameter uncertainty and three energy price scenarios. The executed Bayesian inference propagated the uncertainties through the system and allowed for the visualization of a solution space. The presented uncertainties for the mission energy, mission energy price, and emission criteria for each design solution yield a more reliable basis for robustness analysis and decision-making. Full article
Show Figures

Figure 1

Back to TopTop