Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = aircraft composite structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4165 KB  
Article
Thermoelectric and Ignition Effects of Lightning Strikes on Composite–Metal Lap Joints
by Kui Du, Ruiqi Kang, Yanan Liu, Shu Li, Jinru Sun and Xueling Yao
Aerospace 2025, 12(11), 964; https://doi.org/10.3390/aerospace12110964 - 28 Oct 2025
Viewed by 159
Abstract
Carbon fiber-reinforced polymer (CFRP) composite–metal joint structures are susceptible to localized discharge and thermal damage under lightning current, posing serious safety concerns for critical aircraft components such as fuel tanks. In this study, we investigated the conductive behavior of composite–metal lap joint structures [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composite–metal joint structures are susceptible to localized discharge and thermal damage under lightning current, posing serious safety concerns for critical aircraft components such as fuel tanks. In this study, we investigated the conductive behavior of composite–metal lap joint structures subjected to multiple continuous lightning current components (A, B, and C*) through a combination of experimental testing and numerical simulations. The effects of fastener assembly methods on ignition events were systematically examined, and the ignition source generation mechanisms under interference-fit and clearance-fit conditions were revealed. The protective performance of different assembly approaches against ignition sources was also evaluated. The results indicate that the assembly type and installation method have a pronounced influence on the ignition threshold and damage modes. Specifically, interference-fit joints with wet installation exhibited no ignition even at a current of 91 kA, whereas clearance-fit joints without wet installation generated potential ignition sources at 14 kA. Wet installation effectively increased the ignition threshold by approximately twofold. Copper mesh on the composite surface played a crucial role in current conduction. The simulation results further demonstrated that the current became concentrated at the composite–metal interface upon removal of the copper mesh, causing local temperatures to exceed the resin pyrolysis temperature (893 K), thereby creating potential ignition sites. This study enhances the understanding of lightning ignition mechanisms in composite–metal lap joint structures and provides both theoretical and experimental foundations for improving lightning protection design in aircraft fuel tank structures. Full article
Show Figures

Figure 1

21 pages, 31363 KB  
Article
SHM for Complex Composite Aerospace Structures: A Case Study on Engine Fan Blades
by Georgios Galanopoulos, Shweta Paunikar, Giannis Stamatelatos, Theodoros Loutas, Nazih Mechbal, Marc Rébillat and Dimitrios Zarouchas
Aerospace 2025, 12(11), 963; https://doi.org/10.3390/aerospace12110963 - 28 Oct 2025
Viewed by 295
Abstract
Composite engine fan blades are critical aircraft engine components, and their failure can compromise the safe and reliable operation of the entire aircraft. To enhance aircraft availability and safety within a condition-based maintenance framework, effective methods are needed to identify damage and monitor [...] Read more.
Composite engine fan blades are critical aircraft engine components, and their failure can compromise the safe and reliable operation of the entire aircraft. To enhance aircraft availability and safety within a condition-based maintenance framework, effective methods are needed to identify damage and monitor the blades’ condition throughout manufacturing and operation. This paper presents a unique experimental framework for real-time monitoring of composite engine blades utilizing state-of-the-art structural health monitoring (SHM) technologies, discussing the associated benefits and challenges. A case study is conducted on a representative Foreign Object Damage (FOD) panel, a substructure of a LEAP (Leading Edge Aviation Propulsion) engine fan blade, which is a curved, 3D-woven Carbon Fiber Reinforced Polymer (CFRP) panel with a secondary bonded steel leading edge. The loading scheme involves incrementally increasing, cyclic 4-point bending (loading–unloading) to induce controlled damage growth, simulating in-operation conditions and allowing evaluation of flexural properties before and after degradation. External damage, simulating foreign object impact common during flight, is introduced using a drop tower apparatus either before or during testing. The panel’s condition is monitored in-situ and in real time by two types of SHM sensors: screen-printed piezoelectric sensors for guided ultrasonic wave propagation studies and surface-bonded Fiber Bragg Grating (FBG) strain sensors. Experiments are conducted until panel collapse, and degradation is quantified by the reduction in initial stiffness, derived from the experimental load-displacement curves. This paper aims to demonstrate this unique experimental setup and the resulting SHM data, highlighting both the potential and challenges of this SHM framework for monitoring complex composite structures, while an attempt is made at correlating SHM data with structural degradation. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 5360 KB  
Article
Anti-Icing and Frost Property of Superhydrophobic Micro-Nano Structures with Embossed Micro-Array Channels
by Han Luo, Xiaoliang Wang, Qiwei Li, Honglei Liu, Lei Chen, Debin Shan, Bin Guo and Jie Xu
Materials 2025, 18(20), 4813; https://doi.org/10.3390/ma18204813 - 21 Oct 2025
Viewed by 441
Abstract
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed [...] Read more.
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed to generate nanoscale cluster structures on hundreds of microns array channels to construct a superhydrophobic micro-nano composite structure. The droplet freezing and frosting behavior of the hydrophobic microstructures was analyzed, and it was found that the anti-icing and anti-frost properties of the microstructure surface improved with an increase in the microstructure period size (T). Compared with the original surface, the freezing time of the microstructure at T = 500 μm was delayed by 214.3% (7 s → 22 s), and the frost layer coverage time was delayed by 75.7% (70 s → 123 s). The maximum water contact angle of the superhydrophobic micro-nano composite structure was 153.3°, and the droplet freezing time was delayed to 95 s, which is a 1166.67% difference, indicating that the multi-stage micro-nano composite structure can significantly improve surface anti-icing performance. The main reason for this result is that the bottom of the microstructure can store air pockets, preventing droplet wetting and heat exchange. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

29 pages, 3821 KB  
Article
Mathematical Framework for Digital Risk Twins in Safety-Critical Systems
by Igor Kabashkin
Mathematics 2025, 13(19), 3222; https://doi.org/10.3390/math13193222 - 8 Oct 2025
Viewed by 436
Abstract
This paper introduces a formal mathematical framework for Digital Risk Twins (DRTs) as an extension of traditional digital twin (DT) architectures, explicitly tailored to the needs of safety-critical systems. While conventional DTs enable real-time monitoring and simulation of physical assets, they often lack [...] Read more.
This paper introduces a formal mathematical framework for Digital Risk Twins (DRTs) as an extension of traditional digital twin (DT) architectures, explicitly tailored to the needs of safety-critical systems. While conventional DTs enable real-time monitoring and simulation of physical assets, they often lack structured mechanisms to model stochastic failure processes; evaluate dynamic risk; or support resilient, risk-aware decision-making. The proposed DRT framework addresses these limitations by embedding probabilistic hazard modeling, reliability theory, and coherent risk measures into a modular and mathematically interpretable structure. The DT to DRT transformation is formalized as a composition of operators that project system trajectories onto risk-relevant features, compute failure intensities, and evaluate risk metrics under uncertainty. The framework supports layered integration of simulation, feature extraction, hazard dynamics, and decision-oriented evaluation, providing traceability, scalability, and explainability. Its utility is demonstrated through a case study involving an aircraft brake system, showcasing early warning detection, inspection schedule optimization, and visual risk interpretation. The results confirm that the DRT enables modular, explainable, and domain-agnostic integration of reliability logic into digital twin systems, enhancing their value in safety-critical applications. Full article
Show Figures

Figure 1

29 pages, 1062 KB  
Review
Cost-Effectiveness of Structural Health Monitoring in Aviation: A Literature Review
by Pietro Ballarin, Giuseppe Sala and Alessandro Airoldi
Sensors 2025, 25(19), 6146; https://doi.org/10.3390/s25196146 - 4 Oct 2025
Viewed by 825
Abstract
(1) Background: Structural Health Monitoring Systems (SHMSs) can reduce maintenance costs and aircraft downtime. However, their economic impact remains underexplored, particularly in cost–benefit terms. (2) Methods: This study conducted a targeted literature review on all the existing studies consisting of seventeen economic analyses [...] Read more.
(1) Background: Structural Health Monitoring Systems (SHMSs) can reduce maintenance costs and aircraft downtime. However, their economic impact remains underexplored, particularly in cost–benefit terms. (2) Methods: This study conducted a targeted literature review on all the existing studies consisting of seventeen economic analyses of SHMS applications. Key features—such as SHMS type, structural material, vehicle type, integration stage, and cost elements—were classified to identify prevailing trends and gaps. (3) Results: The analysis revealed a predominance of piezoelectric-based SHMS applied to metallic fixed-wing aircraft, with limited attention to composite structures and e-VTOLs. Most studies focused on maintenance phase impacts, overlooking integration costs during manufacturing. Potential benefits like operational life extension, prognostic capabilities, and safety margin reduction were rarely explored, while critical drawbacks such as detection performance, reliability, and power consumption were underrepresented. Maintenance and fuel costs were the most frequently considered economic drivers; downtime costs were often neglected. (4) Conclusions: Although the majority of reviewed studies suggest a positive economic impact from SHMS implementation, significant gaps remain. Future research should address SHMS reliability, integration during early design stages, and applications to emerging aircraft like e-VTOLs to fully realize SHMS economic advantages. Full article
(This article belongs to the Special Issue Sensors—Integrating Composite Materials in Aerospace Applications)
Show Figures

Figure 1

41 pages, 1309 KB  
Review
Unconventional Mining of End-of-Life Aircrafts: A Systematic Review
by Silvia Zecchi, Giovanni Cristoforo, Carlo Rosso, Alberto Tagliaferro and Mattia Bartoli
Recycling 2025, 10(5), 187; https://doi.org/10.3390/recycling10050187 - 29 Sep 2025
Viewed by 851
Abstract
Advancements in material science have allowed us to exploit the potential of new era for aircraft production. High-performance composites and alloys have allowed us to improve the performance and durability of aircraft, but they have become more and more precious with time. These [...] Read more.
Advancements in material science have allowed us to exploit the potential of new era for aircraft production. High-performance composites and alloys have allowed us to improve the performance and durability of aircraft, but they have become more and more precious with time. These materials can provide significant advantages in use but are costly, energy-intensive to produce, and their recovery and reuse has become a critical step to be addressed. Accordingly, a new approach in which end-of-life aircrafts represent unconventional mines rather than a disposal challenge is becoming increasingly relevant, providing access to high-value strategic raw materials and aligning with circular economy principles including European Green Deal and the United Nations Sustainable Development Goals. The complexity of dismantling and processing hybrid structures composed of metal alloys, ceramics, and advanced composites requires multiple approaches able to integrate chemical, mechanical, and thermal recovery routes. Accordingly, this review critically discusses the state of the art of the routes of end-of-life aircraft treatments, evaluating the connections between technology and regulation, and positions material recycling and reuse as central pillars for advancing sustainability in aerospace. Furthermore, this review provides a comprehensive reference for addressing the technical, economic, and policy challenges of waste management in aviation, contributing to broader goals of resource circularity and environmental preservation set forth by international sustainability agendas. Full article
Show Figures

Graphical abstract

16 pages, 5677 KB  
Article
Research on the Elastic–Plastic Behaviors of Bicontinuous Polymer Matrix and Carbon Fiber-Reinforced Composites Based on Micromechanical Modelling
by Bin Yao, Liang Ren, Guocheng Qi, Yukun Zhao, Zhen Xu, Long Chen, Dongmei Wang and Rui Zhang
Polymers 2025, 17(18), 2517; https://doi.org/10.3390/polym17182517 - 17 Sep 2025
Viewed by 402
Abstract
Due to the potential to integrate structural load bearing and energy storage within one single composite structural component, the development of carbon fiber (CF)-based structural power composites (SPCs) has garnered significant attention in electric aircraft, electric vehicles, etc. Building upon our previous investigation [...] Read more.
Due to the potential to integrate structural load bearing and energy storage within one single composite structural component, the development of carbon fiber (CF)-based structural power composites (SPCs) has garnered significant attention in electric aircraft, electric vehicles, etc. Building upon our previous investigation of the electrochemical performance of SPCs, this work focuses on elastic–plastic behaviors of the bicontinuous structural electrolyte matrices (BSEMs) and carbon fiber composite electrodes (CFCEs) in SPCs. Representative volume element (RVE) models of the BSEMs were numerically generated based on the Cahn–Hilliard equation. Furthermore, RVE models of the CFCEs were established, consisting of the BSEM and randomly distributed CFs. The moduli of BSEMs and the transverse moduli of CFCEs with different functional pore phase volume fractions were predicted and validated against experimental results. Additionally, the local plasticity of BSEMs and CFCEs in the tensile process was analyzed. The work indicates that the presence of the bicontinuous structure prolongs the plasticity evolution process, compared with the traditional polymer matrix, which could be used to explain the brittle-ductile transition observed in the matrix-dominated load-bearing process of CFCEs in the previous literature. This work is a step forward in the comprehensive interpretation of the elastic–plastic behaviors of bicontinuous matrices and multifunctional SPCs for realistic engineering applications. Full article
(This article belongs to the Special Issue Design and Manufacture of Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

17 pages, 1827 KB  
Review
A Review of Polymer Composites and Adhesives for Aircraft Landing Gear Applications
by Hasan Caglar, David Ayre, Andrew Mills, Yigeng Xu and Martin Skote
Aerospace 2025, 12(9), 794; https://doi.org/10.3390/aerospace12090794 - 2 Sep 2025
Viewed by 1325
Abstract
This review paper explores the transformative potential of polymer composites and adhesives in reducing the weight of aircraft landing gear, thereby improving fuel efficiency and lowering emissions. The replacement of conventional metallic materials and mechanical fastenings with advanced thermoset/thermoplastic composites and adhesives can [...] Read more.
This review paper explores the transformative potential of polymer composites and adhesives in reducing the weight of aircraft landing gear, thereby improving fuel efficiency and lowering emissions. The replacement of conventional metallic materials and mechanical fastenings with advanced thermoset/thermoplastic composites and adhesives can significantly enhance durability and performance in demanding operational environments. Unlike traditional fastening methods, the structural adhesives eliminate the weight penalties associated with mechanical fasteners, offering a lighter and more reliable solution that meets the rigorous demands of modern aerospace engineering. Furthermore, the review highlights a variety of manufacturing techniques and innovative materials, including bio-based polymers, self-healing materials, noobed composites, helicoid composites, and hybrid composites. The use of thermosets and vitrimers in adhesive bonding are presented, illustrating their ability to create robust and durable joints that enhance the structural integrity of landing gear systems. The paper also addresses current challenges, including recycling limitations and high material costs. Sustainability considerations, including the integration of self-healing materials, structural health monitoring systems, and circular economy principles, are discussed as essential for aligning the aerospace sector with global climate goals. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 12838 KB  
Review
Recyclability of Composites in Commercial Aviation: Industrial Specificities, Readiness and Challenges
by Pedro Pinto, João Almeida, João Ferreira and Rui Miranda Guedes
J. Compos. Sci. 2025, 9(9), 471; https://doi.org/10.3390/jcs9090471 - 2 Sep 2025
Cited by 1 | Viewed by 1627
Abstract
The integration of composite materials into commercial aviation has transformed the industry by providing superior performance benefits, including enhanced fuel efficiency, reduced emissions, and improved structural integrity. With a significant shift towards aircraft featuring high contents of composite materials, the focus has also [...] Read more.
The integration of composite materials into commercial aviation has transformed the industry by providing superior performance benefits, including enhanced fuel efficiency, reduced emissions, and improved structural integrity. With a significant shift towards aircraft featuring high contents of composite materials, the focus has also turned to the challenges associated with the end-of-life management of these materials. Unlike metals, composites are notoriously difficult to recycle due to the strong bonding between fibres and resin, creating significant environmental and economic challenges. The methodology employed—consisting of an extensive literature review that prioritises a holistic approach—aims to provide an overview of the status of composite recyclability in aviation. With this, the report investigates the durability of composites under operational conditions, the associated environmental factors, and their impact on the recycling potential. The dismantling processes for decommissioned aircraft are analysed to identify strategies that preserve material integrity for effective recycling. Established recycling methods are critically evaluated alongside innovative approaches. The study highlights the limitations of current techniques in terms of costs, energy consumption, and material degradation while exploring emerging technologies that aim to overcome these barriers. It is concluded that currently available techniques do not possess the industrial maturity required to handle the amount of composite materials being employed in aviation. Moreover, there is a clear discontinuity between the developments in the usage of composites and their end-of-life recycling, which can cause serious environmental and economic challenges in future years. By combining information regarding composite usage and aircraft retirements, assessing the environmental and economic implications of composite recycling as well as available techniques, and proposing pathways for improvement, this research underscores the importance of adopting sustainable practices in aviation. The findings aim to contribute to the development of a circular economy within the aerospace sector, ensuring the long-term viability and environmental responsibility of future composite-intensive aircraft designs. This is performed by calling for a multi-stakeholder strategy to drive recycling readiness and facilitate the evolution towards a circular economy in aviation, leading to more sustainable design, production, and dismantlement of aircraft in the future. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

36 pages, 46887 KB  
Article
Dynamic Impact and Vibration Response Analysis of Steel–UHPC Composite Containment Under Aircraft Impact
by Guopeng Ren, Rong Pan, Feng Sun and Guoliang Zhou
Buildings 2025, 15(17), 3130; https://doi.org/10.3390/buildings15173130 - 1 Sep 2025
Viewed by 631
Abstract
The growing concerns over nuclear power plant safety in the wake of extreme impact events have highlighted the need for containment structures with superior resistance to large commercial aircraft strikes. Conventional reinforced concrete containment has shown limitations in withstanding high-mass and high-velocity impacts, [...] Read more.
The growing concerns over nuclear power plant safety in the wake of extreme impact events have highlighted the need for containment structures with superior resistance to large commercial aircraft strikes. Conventional reinforced concrete containment has shown limitations in withstanding high-mass and high-velocity impacts, posing potential risks to structural integrity and operational safety. Addressing this challenge, this study focuses on the dynamic impact resistance and vibration behavior of steel–ultra-high-performance concrete (S-UHPC) composite containment, aiming to enhance nuclear facility resilience under beyond-design-basis aircraft impact scenarios. Validated finite element models in LS-DYNA were developed to simulate impacts from four representative large commercial aircraft types, considering variations in wall and steel plate thicknesses, UHPC grades, and soil–structure interaction conditions. Unlike existing studies that often focus on isolated parameters, this work conducts a systematic parametric analysis integrating multiple aircraft types, structural configurations, and foundation conditions, providing comprehensive insights into both global deformation and high-frequency vibration behavior. Comparative analyses with conventional reinforced concrete containment were performed, and floor response spectra were evaluated to quantify high-frequency vibration characteristics under different site conditions. The results show that S-UHPC containment reduces peak displacement by up to ~24% compared to reinforced concrete of the same thickness while effectively localizing core damage without through-thickness failure. In addition, aircraft impacts predominantly excite 90–125 Hz vibrations, with soft soil conditions amplifying acceleration responses by more than four times, underscoring the necessity of site-specific dynamic analysis in nuclear containment and equipment design. Full article
Show Figures

Figure 1

32 pages, 8920 KB  
Article
Aerodynamic Testing of a 3D-Printed Aircraft Model with a Post-Processed Surface
by Lucjan Setlak, Rafał Kowalik and Tomasz Lusiak
Materials 2025, 18(17), 3996; https://doi.org/10.3390/ma18173996 - 26 Aug 2025
Viewed by 765
Abstract
The subject of the research in this article were experimental tests of the M-346 Master aircraft model, carried out in a wind tunnel using the 3D printing method (FDM) in terms of the impact of surface post-processing technology on its aerodynamic characteristics. The [...] Read more.
The subject of the research in this article were experimental tests of the M-346 Master aircraft model, carried out in a wind tunnel using the 3D printing method (FDM) in terms of the impact of surface post-processing technology on its aerodynamic characteristics. The measurements of key aerodynamic parameters concerned forces and moments in various airflow conditions taking into account variable angles of attack at a constant sideslip angle. The main purpose of the work was to verify the hypothesis that properly performed surface treatment significantly affects the accuracy of actual aerodynamic measurements in terms of solving the research problem using the post-processing technology, to conduct selected tests in a wind tunnel and analyze the obtained results. The obtained results of the tests, which showed a significant impact of the technological parameters of 3D printing and surface treatment methods on the correctness of the representation of real aerodynamic characteristics, were used mainly to analyze the aerodynamic performance of the model, verify the distribution of forces and moments, and evaluate the behavior of the structure in various flight scenarios. The obtained research results, the analysis of the obtained results, and selected tests were used to present important observations and formulate practical conclusions. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

16 pages, 4785 KB  
Article
Wrinkling Analysis and Process Optimization of the Hydroforming Processes of Uncured Fiber Metal Laminates for Aircraft Fairing Structures
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(16), 2267; https://doi.org/10.3390/polym17162267 - 21 Aug 2025
Viewed by 992
Abstract
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many [...] Read more.
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many researchers in the aerospace manufacturing industry, there are still some challenges that need to be considered. Conventional approaches like lay-up techniques and autoclave molding can achieve the relatively simple FML parts with large radii and profiles required for aircraft fuselages and flat skins. However, these methods are not suitable for forming complex-shaped structural parts due to the limited failure strain of fiber-reinforced materials and complex failure modes of the laminates. This research puts forward a new methodology that combines the hydroforming and subsequent curing process to investigate the feasibility of manufacturing complex aircraft parts like fairings made by FMLs. In this research, wrinkle formations are analyzed under various parameters during the hydroforming process. The geometrical shape of the initial blanks and the parameters, including blank holder force and cavity pressure, have been optimized to avoid flange edge wrinkles, and the addition of local support materials contributes to improving local wrinkling in the sharp corners. A finite element model (FEM) taking material laws, interlayer contacts, and boundary conditions into account is used to predict the dynamic hydroforming process of the fiber metal laminate, and experimental works are carried out for its verification. It is expected that the proposed method will reduce both costs and time, as well as reducing laminate defects. Thus, this method offers great potential for future applications related to manufacturing complex-shaped aerospace parts. Full article
(This article belongs to the Special Issue Polymeric Sandwich Composite Materials)
Show Figures

Figure 1

20 pages, 3022 KB  
Article
Development of an Artificial Neural Network-Based Tool for Predicting Failures in Composite Laminate Structures
by Milica Milic Jankovic, Jelena Svorcan and Ivana Atanasovska
Biomimetics 2025, 10(8), 520; https://doi.org/10.3390/biomimetics10080520 - 8 Aug 2025
Viewed by 618
Abstract
Composite materials are widely used in aerospace, automotive, biomedical, and renewable energy sectors due to their high strength-to-weight ratio and design flexibility. However, their anisotropic and layered nature makes structural analysis and failure prediction challenging. Traditional methods require solving complex interlaminar stress–strain equations, [...] Read more.
Composite materials are widely used in aerospace, automotive, biomedical, and renewable energy sectors due to their high strength-to-weight ratio and design flexibility. However, their anisotropic and layered nature makes structural analysis and failure prediction challenging. Traditional methods require solving complex interlaminar stress–strain equations, demanding significant computational resources. This paper presents a bio-inspired machine learning approach, based on human reasoning, to accelerate predictions and reduce dependence on computationally intensive Finite Element Analysis (FEA). An artificial neural network model was developed to rapidly estimate key parameters—laminate thickness, total weight, maximum stress, displacement, deformation, and failure criteria—based on stacking sequence and geometry for a desired load case. Although validated using a specific composite beam, the methodology demonstrates potential for broader use in rapid structural assessment, with prediction deviations under 15% compared to FEA results. The time savings are particularly significant—while conventional FEA can take several hours or even days, the ANN model delivers accurate predictions within seconds. The approach significantly reduces computational time while maintaining precision. Moreover, with further refinement, this logic-driven model could be effectively applied to aircraft maintenance, enabling faster decision-making and improved structural reliability assessment. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

16 pages, 4106 KB  
Article
Optical Sensing Technologies for Cryo-Tank Composite Structural Element Analysis and Maintenance
by Monica Ciminello, Carmine Carandente Tartaglia and Pietro Caramuta
Appl. Sci. 2025, 15(15), 8748; https://doi.org/10.3390/app15158748 - 7 Aug 2025
Viewed by 598
Abstract
This article focuses on activities addressed in the European project hydrogen lightweight & innovative tank for zero-emission aircraft, H2ELIOS. The authors propose a preliminary approach oriented to the design of a structural health monitoring SHM system conceived for a cryo-tank liquid hydrogen storage [...] Read more.
This article focuses on activities addressed in the European project hydrogen lightweight & innovative tank for zero-emission aircraft, H2ELIOS. The authors propose a preliminary approach oriented to the design of a structural health monitoring SHM system conceived for a cryo-tank liquid hydrogen storage for medium range vehicles. The system was ideated to be installed on board and operating during service, to provide early detection and localization of potential damage, critical both in terms of safety and maintenance. The use of optical fibers for strain measurement is justified, on one hand, by the capability of pure silica fiber to prevent hydrogen darkening effects and, on the other hand, by the absence of metal components, which eliminates the risk of embrittlement. In detail, distributed and fiber Bragg grating FBG sensors designed for this specific application have demonstrated reliable monitoring capabilities, even after exposure to hydrogen and at cryogenic temperatures. Furthermore, another key contribution of this preliminary activity is the analysis of thermoplastic material faults by correlating damage characteristics with static and dynamic response. This is due to the fact that the investigated physics strongly depend on the nature of occurring damage. Achievements lie in the demonstrated ability to assess the health status of the reference composite structure, establishing the first steps for a future qualification of the proprietary system, made of commercial and original hardware and software. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensors)
Show Figures

Figure 1

17 pages, 2815 KB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Viewed by 681
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

Back to TopTop