Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = agricultural water distribution control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

7 pages, 723 KiB  
Proceeding Paper
Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.)
by Elshafia Ali Hamid Mohammed, Károly Pál and Azza Siddig Hussien Abbo
Biol. Life Sci. Forum 2025, 47(1), 2; https://doi.org/10.3390/blsf2025047002 - 24 Jul 2025
Viewed by 261
Abstract
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the [...] Read more.
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the growth of mould-causing organisms such as fungi and bacteria. It is known to have antibacterial properties. The objective of the current study was to evaluate the in vitro effect of OFA on the post-harvest pathogens of Mabroom fruits. Fresh, apparently healthy, and fully ripe Mabroom dates were obtained from the National Agriculture and Food Corporation (NAFCO). The chosen fruits were packed in sterile, well-ventilated plastic boxes and transported to the lab under controlled conditions. The fruits were distributed into five groups (G1 to G5). The groups G1, G2, and G3 received 1%, 2%, and 3.5% OFA, respectively, while G4 was left untreated and G5 was washed only with tap water as a positive control treatment. Each group contained 200 g of fresh and healthy semi-soft dates. The samples were then dried and incubated in a humidity chamber at 25 °C ± 2 for seven days. The signs and symptoms of decay were monitored and recorded. The presence of pathogens was confirmed via phenotypic and microscopic-based methods. The results showed a significant difference (p ≤ 0.05) among the groups. OFA at 3.5% had the strongest inhibitory action against post-harvest pathogens, followed by OFA2%. However, there were no differences (p ≤ 0.05) between OFA1% and the control groups. Aspergillus spp., Penicillium spp., Rhizopus spp., and Botrytis spp. were most abundant in the control group, followed by OFA2% and OFA1%, respectively. In conclusion, octanoic fatty acid at 3.5% may improve the quality of date fruits through its high antimicrobial activity, reduce the effect of post-harvest decay, minimize the loss of date fruits during storage, and improve the sustainability of date fruits. Further experiments are necessary to confirm the effectiveness of OFA as a green solution for sustainable date fruit production. Full article
Show Figures

Figure 1

34 pages, 6467 KiB  
Article
Predictive Sinusoidal Modeling of Sedimentation Patterns in Irrigation Channels via Image Analysis
by Holger Manuel Benavides-Muñoz
Water 2025, 17(14), 2109; https://doi.org/10.3390/w17142109 - 15 Jul 2025
Viewed by 329
Abstract
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel [...] Read more.
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel Sinusoidal Morphodynamic Bedload Transport Equation (SMBTE) to predict sediment deposition patterns with high precision. Conducted along the Malacatos River in La Tebaida Linear Park, Loja, Ecuador, the research captured a natural sediment transport event under controlled flow conditions, transitioning from pressurized pipe flow to free-surface flow. Observed sediment deposition reduced the hydraulic cross-section by approximately 5 cm, notably altering flow dynamics and water distribution. The final SMBTE model (Model 8) demonstrated exceptional predictive accuracy, achieving RMSE: 0.0108, R2: 0.8689, NSE: 0.8689, MAE: 0.0093, and a correlation coefficient exceeding 0.93. Complementary analyses, including heatmaps, histograms, and vector fields, revealed spatial heterogeneity, local gradients, and oscillatory trends in sediment distribution. These tools identified high-concentration sediment zones and quantified variability, providing actionable insights for optimizing canal design, maintenance schedules, and sediment control strategies. By leveraging open-source software and real-world validation, this methodology offers a scalable, replicable framework applicable to diverse water conveyance systems. The study advances understanding of sediment dynamics under subcritical (Fr ≈ 0.07) and turbulent flow conditions (Re ≈ 41,000), contributing to improved irrigation efficiency, system resilience, and sustainable water management. This research establishes a robust foundation for future advancements in sediment transport modeling and hydrological engineering, addressing critical challenges in agricultural water systems. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 496 KiB  
Review
Analysis of Heavy Metal Pollution Characteristics and Biological Effects in Lake Sediments: Implications for Health Risk Assessment
by Zheng Li, Weiwei Zhang, Shuhang Wang, Xia Jiang, Huaicheng Guo, Yong Liu and Zhenghui Fu
Processes 2025, 13(7), 2140; https://doi.org/10.3390/pr13072140 - 5 Jul 2025
Viewed by 484
Abstract
Heavy metals have long been a significant and challenging topic in the research and treatment of lake water environments due to their non-degradability and ease of bioaccumulation. With the advancement of industries such as manufacturing, agriculture, and heavy industry, coupled with the increasing [...] Read more.
Heavy metals have long been a significant and challenging topic in the research and treatment of lake water environments due to their non-degradability and ease of bioaccumulation. With the advancement of industries such as manufacturing, agriculture, and heavy industry, coupled with the increasing demand for heavy metals, the levels of heavy metals entering the environment have been rising annually. This trend necessitates more refined control measures for heavy metals in the environment. Currently, research on heavy metals in lake sediments in China mainly focuses on spatial distribution, morphological analysis, and ecological risk assessment. However, the characteristics of heavy metal migration, transformation, and biological effects are still largely unquantifiable. This article analyzes soil pollution cases in multiple regions of China and summarizes the nine main sources of heavy metals in the environment. It discusses the characteristics and biological effects of heavy metal migration and transformation. Finally, from the perspective of human health risk assessment, it explores the future development direction of heavy metal research. Full article
(This article belongs to the Special Issue Advances in Water Resource Pollution Mitigation Processes)
Show Figures

Figure 1

20 pages, 4992 KiB  
Article
Spatial Heterogeneity and Controlling Factors of Heavy Metals in Groundwater in a Typical Industrial Area in Southern China
by Jiaxu Du, Fu Liao, Ziwen Zhang, Aoao Du and Jiale Qian
Water 2025, 17(13), 2012; https://doi.org/10.3390/w17132012 - 4 Jul 2025
Viewed by 573
Abstract
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling [...] Read more.
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling factors of heavy metals is crucial for pollution prevention and water resource management in industrial regions. This study applied spatial autocorrelation analysis and self-organizing maps (SOM) coupled with K-means clustering to investigate the spatial distribution and key influencing factors of nine heavy metals (Cr, Fe, Mn, Ni, Cu, Zn, As, Ba, and Pb) in a typical industrial area in southern China. Heavy metals show significant spatial heterogeneity in concentrations. Cr, Mn, Fe, and Cu form local hotspots near urban and peripheral zones; Ni and As present downstream enrichment along the river pathway with longitudinal increase trends; Zn, Ba, and Pb exhibit a fluctuating pattern from west to east in the piedmont region. Local Moran’s I analysis further revealed spatial clustering in the northwest, riverine zones, and coastal outlet areas, providing insight into potential source regions. SOM clustering identified three types of groundwater: Cluster 1 (characterized by Cr, Mn, Fe, and Ni) is primarily influenced by industrial pollution and present spatially scattered distribution; Cluster 2 (dominated by As, NO3, Ca2+, and K+) is associated with domestic sewage and distributes following river flow; Cluster 3 (enriched in Zn, Ba, Pb, and NO3) is shaped by agricultural activities and natural mineral dissolution, with a lateral distribution along the piedmont zone. The findings of this study provide a scientific foundation for groundwater pollution prevention and environmental management in industrialized areas. Full article
Show Figures

Figure 1

25 pages, 3581 KiB  
Article
Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System
by Jingyi Huang, Fengyan Tian, Yuanxing Huang, Hong Tao and Feipeng Li
Water 2025, 17(13), 2000; https://doi.org/10.3390/w17132000 - 3 Jul 2025
Viewed by 376
Abstract
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment [...] Read more.
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment total nitrogen (TN), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3-N) were measured, with aquaculture-dominated lakes such as Xueluoyang Lake and Caodang Marsh exhibiting significantly higher sedimentary TN concentrations than the Taipu River. In Xueluoyang Lake, the average TN content reached 1037.3 mg/kg—1.87 times higher than in the river—highlighting the legacy effect of historical intensive aquaculture. Correlation analyses showed strong associations between sediment NH4+-N and NO3-N and nitrogen levels in overlying water, confirming sediments as a major endogenous nitrogen source. Multivariate statistical methods, including Pearson’s correlation, hierarchical clustering, and principal component analysis, were applied to elucidate spatial patterns and key influencing factors. Water quality evaluation indices and sediment organic pollution assessments revealed widespread TN exceedance, particularly in dry seasons, with water quality deteriorating to Class V or worse. These results underscore the need for strengthened control of sedimentary nitrogen release and effective management of agricultural non-point source pollution to restore and protect water quality in river–lake systems. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

19 pages, 2927 KiB  
Article
Restoration, Indicators, and Participatory Solutions: Addressing Water Scarcity in Mediterranean Agriculture
by Enrico Vito Perrino, Pandi Zdruli, Lea Piscitelli and Daniela D’Agostino
Agronomy 2025, 15(7), 1517; https://doi.org/10.3390/agronomy15071517 - 22 Jun 2025
Viewed by 513
Abstract
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional [...] Read more.
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional farms in the Stornara and Tara area (Puglia, Italy). The research aimed to identify critical indicators for sustainable water management and develop ecosystem restoration strategies that can be replicated across similar Mediterranean agro-ecosystems. An interdisciplinary, participatory approach was adopted, combining technical analyses and stakeholder engagement through three workshops involving 30 participants from diverse sectors. Fieldwork and laboratory assessments included soil sampling and analysis of parameters such as pH, electrical conductivity, soil organic carbon, nutrients, and salinity. Cartographic studies of vegetation, land use, and pedological characterization supplemented the dataset. The key challenges identified were water loss in distribution systems, seawater intrusion, water pumping from unauthorized wells, and inadequate public policies. Soil quality was significantly influenced by salt stress, hence affecting crop productivity, while socio-economic factors affected farm income. Restoration strategies emphasized the need for water-efficient irrigation, less water-intensive crops, and green vegetation in infrastructure channels while incorporating also the native flora. Enhancing plant biodiversity through weed management in drainage channels proved beneficial for pathogen control. Proposed socio-economic measures include increased inclusion of women and youth in agricultural management activities. Integrated technical and participatory approaches are essential for effective water resource governance in Mediterranean agriculture. This study offers scalable, context-specific indicators and solutions for sustainable land and water management in the face of ongoing desertification and climate stress. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

20 pages, 30581 KiB  
Article
Hydrochemical Characteristics, Controlling Factors, and High Nitrate Hazards of Shallow Groundwater in an Urban Area of Southwestern China
by Chang Yang, Si Chen, Jianhui Dong, Yunhui Zhang, Yangshuang Wang, Wulue Kang, Xingjun Zhang, Yuanyi Liang, Dunkai Fu, Yuting Yan and Shiming Yang
Toxics 2025, 13(6), 516; https://doi.org/10.3390/toxics13060516 - 19 Jun 2025
Viewed by 363
Abstract
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, [...] Read more.
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, and drinking water safety in an urban area of southwestern China. Thirty-one groundwater samples were collected and analyzed for major hydrochemical parameters and dual isotopic composition of NO315N-NO3 and δ18O-NO3). The groundwater samples were characterized by neutral to slightly alkaline nature, and were dominated by the Ca-HCO3 type. Hydrochemical analysis revealed that water–rock interactions, including carbonate dissolution, silicate weathering, and cation exchange, were the primary natural processes controlling hydrochemistry. Additionally, anthropogenic influences have significantly altered NO3 concentration. A total of 19.35% of the samples exceeded the Chinese guideline limit of 20 mg/L for NO3. Isotopic evidence suggested that primary sources of NO3 in groundwater include NH4+-based fertilizer, soil organic nitrogen, sewage, and manure. Spatial distribution maps indicated that the spatial distribution of NO3 concentration correlated strongly with land use types. Elevated NO3 levels were observed in areas dominated by agriculture and artificial surfaces, while lower concentrations were associated with grass-covered ridge areas. The unabsorbed NH4+ from nitrogen fertilizer entered groundwater along with precipitation and irrigation water infiltration. The direct discharge of domestic sewage and improper disposal of livestock manure contributed substantially to NO3 pollution. The nitrogen fixation capacity of the grassland ecosystem led to a relatively low NO3 concentration in the ridge region. Despite elevated NO3 and F concentrations, the entropy weighted water quality index (EWQI) indicated that all groundwater samples were suitable for drinking. This study provides valuable insights into NO3 source identification and hydrochemical processes across varying land-use types. Full article
Show Figures

Figure 1

30 pages, 3838 KiB  
Review
Overview of Agricultural Machinery Automation Technology for Sustainable Agriculture
by Li Jiang, Boyan Xu, Naveed Husnain and Qi Wang
Agronomy 2025, 15(6), 1471; https://doi.org/10.3390/agronomy15061471 - 16 Jun 2025
Cited by 2 | Viewed by 1754
Abstract
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired [...] Read more.
Automation in agricultural machinery, underpinned by the integration of advanced technologies, is revolutionizing sustainable farming practices. Key enabling technologies include multi-source positioning fusion (e.g., RTK-GNSS/LiDAR), intelligent perception systems utilizing multispectral imaging and deep learning algorithms, adaptive control through modular robotic systems and bio-inspired algorithms, and AI-driven data analytics for resource optimization. These technological advancements manifest in significant applications: autonomous field machinery achieving lateral navigation errors below 6 cm, UAVs enabling targeted agrochemical application, reducing pesticide usage by 40%, and smart greenhouses regulating microclimates with ±0.1 °C precision. Collectively, these innovations enhance productivity, optimize resource utilization (water, fertilizers, energy), and mitigate critical labor shortages. However, persistent challenges include technological heterogeneity across diverse agricultural environments, high implementation costs, limitations in adaptability to dynamic field conditions, and adoption barriers, particularly in developing regions. Future progress necessitates prioritizing the development of lightweight edge computing solutions, multi-energy complementary systems (integrating solar, wind, hydropower), distributed collaborative control frameworks, and AI-optimized swarm operations. To democratize these technologies globally, this review synthesizes the evolution of technology and interdisciplinary synergies, concluding with prioritized strategies for advancing agricultural intelligence to align with the Sustainable Development Goals (SDGs) for zero hunger and responsible production. Full article
(This article belongs to the Special Issue Innovations in Agriculture for Sustainable Agro-Systems)
Show Figures

Figure 1

22 pages, 2787 KiB  
Article
SWAT-Based Characterization of and Control Measures for Composite Non-Point Source Pollution in Yapu Port Basin, China
by Lina Chen, Yimiao Sun, Junyi Tan and Wenshuo Zhang
Water 2025, 17(12), 1759; https://doi.org/10.3390/w17121759 - 12 Jun 2025
Viewed by 430
Abstract
The Soil and Water Assessment Tool (SWAT) was utilized to analyze the spatiotemporal distribution patterns of composite non-point source pollution in the Yapu Port Basin, China, and to quantify the pollutant load contributions from various sources. Scenario-based simulations were designed to assess the [...] Read more.
The Soil and Water Assessment Tool (SWAT) was utilized to analyze the spatiotemporal distribution patterns of composite non-point source pollution in the Yapu Port Basin, China, and to quantify the pollutant load contributions from various sources. Scenario-based simulations were designed to assess the effectiveness of different mitigation strategies, focusing on both agricultural and urban non-point source pollution control. The watershed was divided into 39 sub-watersheds and 106 hydrologic response units (HRUs). Model calibration and validation were conducted using the observed data on runoff, total phosphorus (TP), and total nitrogen (TN). The results demonstrate good model performance, with coefficients of determination (R2) ≥ 0.85 and Nash–Sutcliffe efficiencies (NSEs) ≥ 0.84, indicating its applicability to the study area. Temporally, pollutant loads exhibited a positive correlation with precipitation, with peak values observed during the annual flood season. Spatially, pollution intensity increased from upstream to downstream, with the western region of the watershed showing higher loss intensity. Pollution was predominantly concentrated in the downstream region. Based on the composite source analysis, a series of management measures were designed targeting both agricultural and urban non-point source pollution. Among individual measures, fertilizer reduction in agricultural fields and the establishment of vegetative buffer strips demonstrated the highest effectiveness. Combined management strategies significantly enhanced pollution control, with average TN and TP load reductions of 22.18% and 22.70%, respectively. The most effective scenario combined fertilizer reduction, improved urban stormwater utilization, vegetative buffer strips, and grassed swales in both farmland and orchards, resulting in TN and TP reductions of 67.2% and 56.2%, respectively. Full article
Show Figures

Figure 1

18 pages, 1440 KiB  
Article
Evaluation of Performance on Spiral Fluidic Sprinkler Using Different Nozzle Sizes Under Indoor Conditions
by Joseph Kwame Lewballah, Xingye Zhu, Alexander Fordjour and Simin Yao
Water 2025, 17(12), 1745; https://doi.org/10.3390/w17121745 - 10 Jun 2025
Viewed by 459
Abstract
Sprinkler system performance enhancement has been a key area of research due to concerns about water shortages and rising energy costs. This study evaluated the hydraulic performance of the newly designed Spiral Fluidic Sprinkler (SFS) with various nozzles under different operating pressures. MATLAB [...] Read more.
Sprinkler system performance enhancement has been a key area of research due to concerns about water shortages and rising energy costs. This study evaluated the hydraulic performance of the newly designed Spiral Fluidic Sprinkler (SFS) with various nozzles under different operating pressures. MATLAB R2020b software was used to simulate sprinkler uniformities under various operating pressures and the droplet diameter, velocity, and kinetic energy were measured using a 2DVD video raindrop spectrometer. The results showed that larger nozzle sizes generally improved application uniformity and efficiency. The 4 mm nozzle at 200 kPa achieved the lowest coefficient of variation (CV) at 6.2%, while the 3 mm nozzle showed a higher CV of 10.4%. Under 200 and 250 kPa of pressure, a statistically significant difference (p < 0.05) was observed between the CVs for the 4 mm nozzle. Droplet size distributions revealed that over 90% of droplets produced by the 4 mm nozzle were under 3 mm in diameter across all pressures. Kinetic energy analysis indicated that droplet momentum increased with pressure, enhancing coverage but potentially increasing drift at higher levels. Overall, the SFS demonstrated strong potential for water conservation and improved irrigation efficiency in controlled agricultural environments. Full article
(This article belongs to the Special Issue Advances in Agricultural Irrigation Management and Technology)
Show Figures

Figure 1

24 pages, 3464 KiB  
Article
Assessment of Citrus Water Status Using Proximal Sensing: A Comparative Study of Spectral and Thermal Techniques
by Fiorella Stagno, Angela Randazzo, Giancarlo Roccuzzo, Roberto Ciorba, Tiziana Amoriello and Roberto Ciccoritti
Land 2025, 14(6), 1222; https://doi.org/10.3390/land14061222 - 6 Jun 2025
Viewed by 589
Abstract
Early detection of plant water status is crucial for efficient crop management. In this research, proximal sensing tools (i.e., hyperspectral imaging HSI and thermal IR camera) were used to monitor changes in spectral and thermal profiles of a citrus orchard in Sicily (Italy), [...] Read more.
Early detection of plant water status is crucial for efficient crop management. In this research, proximal sensing tools (i.e., hyperspectral imaging HSI and thermal IR camera) were used to monitor changes in spectral and thermal profiles of a citrus orchard in Sicily (Italy), managed under five irrigation systems. The irrigation systems differ in the amount of water distribution and allow four different strategies of deficit irrigation to be obtained. The physiological traits, stem water potential, net photosynthetic rate, stomatal conductance and the amount of leaf chlorophyll were measured over the crop’s growing season for each treatment. The proximal sensing data consisted of thermal and hyperspectral imagery acquired in June–September during the irrigation seasons 2023–2024 and 2024–2025. Significant variation in physiological traits was observed in relation to the different irrigation strategies, highlighting the highest plant water stress in July, in particular for the partial root-zone drying irrigation system. The water-use efficiency (WUE) values in subsurface drip irrigation were similar to the moderate deficit irrigation treatment and more efficient (up to 50%) as compared to control. Proximal sensing measures confirmed a different plant water status in relation to the five different irrigations strategies. Moreover, four spectral indices (Normalized Difference Vegetation Index NDVI; Water Index WI; Photochemical Reflectance Index PRI; Transformed Chlorophyll Absorption Ratio Index TCARI), calculated from HSI spectra, highlighted strong correlations with physiological traits, especially with stem water potential and the amount of leaf chlorophyll (coefficient of correlation ranged between −0.4 and −0.5). This study demonstrated the effectiveness of using proximal sensing tools in precision agriculture and ecosystem monitoring, helping to ensure optimal plant health and water use efficiency. Full article
Show Figures

Figure 1

19 pages, 6988 KiB  
Article
Unraveling the Impact of Inter-Basin Water Transfer on Soil Salinity and Sodicity and the Crop Yield Response in the Karamay Irrigation District of China
by Wei Liu, Xinwei Yin, Meng Zhu, Jutao Zhang, Wen Liu, Yingqing Su, Naying Chai and Yuhui Chen
Agronomy 2025, 15(6), 1386; https://doi.org/10.3390/agronomy15061386 - 5 Jun 2025
Viewed by 460
Abstract
Large-scale inter-basin water transfer is an important means to alleviate the pressure on water resources in water shortage regions. However, the long-term impacts of inter-basin transfers on the regional water–salt balance and associated land productivity remain poorly understood, especially in salt-affected arid environments. [...] Read more.
Large-scale inter-basin water transfer is an important means to alleviate the pressure on water resources in water shortage regions. However, the long-term impacts of inter-basin transfers on the regional water–salt balance and associated land productivity remain poorly understood, especially in salt-affected arid environments. To fill this gap, the core objective of this study was to reveal the implications of inter-basin water transfer on soil salinity and sodicity and the crop yield response under different irrigation practices. We conducted a case study on the Karamay irrigation district (KID), an artificial oasis with a 30-year history of inter-basin water transfer in northwestern China, using trend and correlation analyses, water–salt balance analyses, and salt-controlled yield reduction functions as well as field comprehensive measurements over 1996–2023. The results indicate that soil salinity and sodicity profiles, overall, exhibited a clear vertical stratification under both the early and late crop growing stages, and the degree of the soil salinization was decreasing, and the area of non-saline land was increasing significantly from 1996 to 2023 in the KID. Owing to the lack of salt-washing water and the poor irrigation water quality, the water-saving irrigated farmland was in the slight salt-aggregating state in the topsoil layer, while the other soil layers were in the salt-expelling or salt-equilibrating state in the KID. The profile distribution and exchange fluxes of soil salinity and sodicity are mainly characterized by climate, irrigation, and groundwater dynamics, as well as the plant salt tolerance, soil properties, and agronomic management which also influence the soil salt accumulation. With the transformation of irrigation schemes from traditional flood irrigation to modern water-saving irrigation during 1996–2023, the impact of soil salinity on relative crop yields has been substantially reduced in the KID, especially for salt-sensitive crops. This revealed that optimizing the drainage facilities, precise field irrigation and fertilization measures, and rational crop selection and agronomic practices are vital for high-quality development in the KID. Capitalizing on these research findings, we would provide effective directives for maintaining the sustainability of agricultural development in other similar inter-basin water transfer zones in the world. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

16 pages, 4698 KiB  
Article
Heavy Metal Contamination in Surface Sediments of Wanfeng Lake, Southwest China: Spatial Distribution Patterns and Ecological Risk Assessment
by Fengyi Chang, Meng Zhou, Yifei Leng, Xi Zou, Yihan Dai, Chao Ke, Wen Xiong and Zhu Li
Earth 2025, 6(2), 51; https://doi.org/10.3390/earth6020051 - 2 Jun 2025
Viewed by 458
Abstract
Heavy metal pollution poses a significant threat to aquatic ecosystems and drinking water sources, necessitating comprehensive environmental assessments. This study investigated the spatial distribution, potential ecological risks, and sources of heavy metals in the surface sediments of Wanfeng Lake to inform effective pollution [...] Read more.
Heavy metal pollution poses a significant threat to aquatic ecosystems and drinking water sources, necessitating comprehensive environmental assessments. This study investigated the spatial distribution, potential ecological risks, and sources of heavy metals in the surface sediments of Wanfeng Lake to inform effective pollution management strategies. Twelve sediment samples were collected and analyzed for eight heavy metals (Hg, As, Cu, Pb, Cd, Cr, Ni, Zn) using inductively coupled plasma mass spectrometry. The geo-accumulation index (Igeo) and potential ecological risk index (RI) were applied to assess contamination levels and ecological risks. Cluster analysis and Kriging interpolation were used to identify potential pollution sources and spatial patterns. Results revealed that heavy metal concentrations decreased in the order Zn > Pb > Cu > Cr > Ni > As > Cd > Hg, with Hg concentrations exceeding the national average for Chinese lake sediments. Ecological risk assessments identified Hg (0.06 μg/g) and Cd (0.10 μg/g) as the priority pollutants. The Hg posed a moderate ecological risk, particularly in upstream areas, while Cd pollution was concentrated downstream. Atmospheric deposition was identified as the primary source of Hg, whereas agricultural activities were determined to be the main driver of Cd contamination. These findings provide a scientific basis for developing targeted pollution control measures in Wanfeng Lake. Full article
Show Figures

Figure 1

11 pages, 723 KiB  
Article
Anthropogenic Release of Per- and Polyfluoroalkyl Substances into Surface Water Systems: Distribution Characteristics and Environmental Persistence Analysis
by Miaomiao Sun and Yuqian Li
Water 2025, 17(11), 1589; https://doi.org/10.3390/w17111589 - 24 May 2025
Viewed by 455
Abstract
In view of the issues including the incomplete identification of alternatives and difficulty in tracing pollution sources in PFAS pollution monitoring in surface water, this study took typical surface waters with intensive human activities as the object to perform PFAS screening. A nontarget [...] Read more.
In view of the issues including the incomplete identification of alternatives and difficulty in tracing pollution sources in PFAS pollution monitoring in surface water, this study took typical surface waters with intensive human activities as the object to perform PFAS screening. A nontarget analysis based on high-resolution mass spectrometry was developed, coupled with a modified solid phase extraction pretreatment method, to achieve the comprehensive screening of 12 legacy carboxylic acids and sulfonic acids, as well as 2 novel alternatives in water. Surface water samples were collected from typical functional areas of human activity to reveal the spatial differential distribution of PFAS concentrations. The long-chain PFASs showed a high detected concentration, among which PFOS, PFUnDA, and PFOA concentrations were especially high in urban complex pollution areas, while PFDA, PFOS, and PFOA were the main components in agricultural areas. The two exposure patterns showed a certain degree of differentiation, which may be related to different pollution sources. PFASs with a long carbon chain, especially chlorine-substituted sulfonic acid, are high-persistent-risk substances. This study provided the data basis for the prevention and control of PFAS pollution in surface water, and supported the treatment of emerging pollutants in the region. Full article
Show Figures

Figure 1

Back to TopTop