Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = aero-engine intake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12472 KB  
Article
Fixed-Time Active Disturbance Rejection Temperature–Pressure Decoupling Control for a High-Flow Air Intake System
by Louyue Zhang, Hehong Zhang, Duoqi Shi, Zhihong Dan, Xi Wang, Chao Zhai, Gaoxi Xiao and Zhouzhe Xu
Entropy 2025, 27(8), 880; https://doi.org/10.3390/e27080880 - 20 Aug 2025
Viewed by 679
Abstract
High-flow aeroengine transient tests involve strong coupling and external disturbances, which pose significant challenges for intake environment simulation systems (IESSs). This study proposes a compound control scheme that combines fixed-time active disturbance rejection with static decoupling methods. The scheme integrates a fixed-time sliding-mode [...] Read more.
High-flow aeroengine transient tests involve strong coupling and external disturbances, which pose significant challenges for intake environment simulation systems (IESSs). This study proposes a compound control scheme that combines fixed-time active disturbance rejection with static decoupling methods. The scheme integrates a fixed-time sliding-mode controller (FT-SMC) and a super-twisting fixed-time extended-state observer (ST-FT-ESO). A decoupling transformation separates pressure and temperature dynamics into two independent loops. The observer estimates system states and total disturbances, including residual coupling, while the controller ensures fixed-time convergence. The method is deployed on a real-time programmable logic controller (PLC) and validated through hardware-in-the-loop (HIL) simulations under representative high-flow scenarios. Compared to conventional linear active disturbance rejection decoupling control (LADRDC), the proposed scheme reduces the absolute integral error (AIE) in pressure and temperature tracking by 71.9% and 77.9%, respectively, and reduces the mean-squared error (MSE) by 46.0% and 41.3%. The settling time improves from over 5 s to under 2 s. These results demonstrate improved tracking accuracy, faster convergence, and enhanced robustness against disturbances. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

23 pages, 6299 KB  
Article
Multi-Valve Coordinated Disturbance Rejection Control for an Intake Pressure System Using External Penalty Functions
by Louyue Zhang, Duoqi Shi, Chao Zhai, Zhihong Dan, Hehong Zhang, Xi Wang and Gaoxi Xiao
Actuators 2025, 14(7), 334; https://doi.org/10.3390/act14070334 - 2 Jul 2025
Viewed by 464
Abstract
Altitude test facilities for aero-engines employ multi-chamber, multi-valve intake systems that require effective decoupling and strong disturbance rejection during transient tests. This paper proposes a coordinated active disturbance rejection control (ADRC) scheme based on external penalty functions. The chamber pressure safety limit is [...] Read more.
Altitude test facilities for aero-engines employ multi-chamber, multi-valve intake systems that require effective decoupling and strong disturbance rejection during transient tests. This paper proposes a coordinated active disturbance rejection control (ADRC) scheme based on external penalty functions. The chamber pressure safety limit is formulated as an inequality-constrained optimization problem, and an exponential penalty together with a gradient based algorithm is designed for dynamic constraint relaxation, with guaranteed global convergence. A coordination term is then integrated into a distributed ADRC framework to yield a multi-valve coordinated ADRC controller, whose asymptotic stability is established via Lyapunov theory. Hardware-in-the-loop simulations using MATLAB/Simulink and a PLC demonstrate that, under ±3 kPa pressure constraints, the maximum engine inlet pressure error is 1.782 kPa (77.1% lower than PID control), and under an 80 kg/s2 flow-rate disturbance, valve oscillations decrease from ±27% to ±5%. These results confirm the superior disturbance rejection and decoupling performance of the proposed method. Full article
(This article belongs to the Special Issue Actuation and Robust Control Technologies for Aerospace Applications)
Show Figures

Figure 1

17 pages, 4173 KB  
Article
A Parameter Self-Tuning Rule Based on Spatial–Temporal Scale for Active Disturbance Rejection Control and Its Application in Flight Test Chamber Systems
by Zhuang Xu, Hehong Zhang, Yunde Xie, Chao Zhai, Xin Wang and Feng Huang
Aerospace 2025, 12(6), 465; https://doi.org/10.3390/aerospace12060465 - 23 May 2025
Viewed by 581
Abstract
Active disturbance rejection control (ADRC) emerges as a promising control approach due to its partial model-based characteristics and strong disturbance rejection capabilities. Nevertheless, it is a difficult problem to tune various parameters of ADRC in practical applications. To address the challenge of parameter [...] Read more.
Active disturbance rejection control (ADRC) emerges as a promising control approach due to its partial model-based characteristics and strong disturbance rejection capabilities. Nevertheless, it is a difficult problem to tune various parameters of ADRC in practical applications. To address the challenge of parameter tuning, this work develops a parameter self-tuning rule based on spatial–temporal scale transformations to simplify the tuning process and enhance its control performance. In particular, based on the transformations of spatial–temporal scale, the parameter tuning relationships for ADRC’s components, including tracking differentiator (TD), extended state observer (ESO) and feedback controller, are provided for a second-order nonlinear system. Numerical simulations show that the proposed method can conveniently and effectively provide a set of well-tuned parameters for ADRC to boost the efficiency of control. Finally, the proposed parameter tuning rule is applied to the intake pressure control of the flight test chamber system, further validating its effectiveness. The results demonstrate that the ADRC with the proposed parameter self-tuning method significantly improves the precision of the intake pressure under different operating conditions, thereby ensuring the reliability of aeroengine flight tests. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 11147 KB  
Article
Numerical Study of Wind Tunnel Wall Effects on Icing Cloud Distribution and Water Collection in Aero-Engine Nacelles
by Cong Li, Ningli Chen, Xian Yi and Qingren Lai
Aerospace 2025, 12(4), 335; https://doi.org/10.3390/aerospace12040335 - 13 Apr 2025
Viewed by 2187
Abstract
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach [...] Read more.
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach to quantify WTW-induced alterations in Liquid Water Content (LWC) distribution inside the nacelle and droplet collection efficiency (β) on its surfaces. The results show that the WTW-induced flow deflection redirects droplets toward the outer nacelle surface, leading to an increase in the maximum droplet collection efficiency (βmax) and the total collected water mass on the nacelle under baseline conditions (Mach Number = 0.206) and causing a banded regime of the deviation in LWC. Parametric analysis further shows that higher inflow velocities and Median Volumetric Diameters (MVDs) enhanced the WTW’s effect on the change in LWC inside the nacelle and increased the maximum droplet collection efficiency on the nacelle’s surface. However, the increase in the intake flow rates exhibits a counteracting trend for the effect of the WTW for both the deviation in LWC and the maximum droplet collection efficiency and the total collected water mass. The findings highlight the necessity of accounting for WTW effects in icing wind tunnel testing protocols to improve flight condition extrapolation accuracy. Full article
Show Figures

Figure 1

17 pages, 5782 KB  
Article
A Novel Approach to High Stability Engine Control for Aero-Propulsion Systems in Supersonic Conditions
by Fengyong Sun, Jitai Han and Changpo Song
Aerospace 2024, 11(12), 1029; https://doi.org/10.3390/aerospace11121029 - 16 Dec 2024
Viewed by 1127
Abstract
In a supersonic state, the aero-engine operates under harsh circumstances of elevated temperature, high pressure, and rapid rotor speed. This work provides an innovative high-stability control technique for engines with fixed-geometry inlets, addressing stability control issues at the aero-propulsion system level. The discussion [...] Read more.
In a supersonic state, the aero-engine operates under harsh circumstances of elevated temperature, high pressure, and rapid rotor speed. This work provides an innovative high-stability control technique for engines with fixed-geometry inlets, addressing stability control issues at the aero-propulsion system level. The discussion begins with the importance of an integrated model for the intake and the aero-engine, introducing two stability indices (surge margin and buzz margin) to characterize inlet stability. A novel predictive model for engine air mass flow is developed to address the indeterminate issue of engine air mass flow. The integration of input parameters in the predictive model is refined using the least squares support vector regression (LSSVR) algorithm, and historical input data is used to enhance predictive performance, as validated by numerical simulation results. A data-driven adaptive augmented linear quadratic regulator (d-ALQR) control technique is suggested to adaptively modify the control parameters of the augmented linear quadratic regulator. A highly stable control strategy is finally proposed, integrating the predictive model with the d-ALQR controller. The simulation results conducted during maneuvering flight operations demonstrate that the developed high-stability controller can maintain the inlet in an efficient and safe condition, ensuring optimal compatibility between the engine and the inlet. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 90455 KB  
Article
Lessons Learnt from the Simulations of Aero-Engine Ground Vortex
by Wenqiang Zhang, Tao Yang, Jun Shen and Qiangqiang Sun
Aerospace 2024, 11(9), 699; https://doi.org/10.3390/aerospace11090699 - 26 Aug 2024
Cited by 2 | Viewed by 1901
Abstract
With the startup of the aero-engine, the ground vortex is formed between the ground and the engine intake. The ground vortex leads to total pressure and swirl distortion, which reduces the performance of the engine. The inhalation of the dust and debris through [...] Read more.
With the startup of the aero-engine, the ground vortex is formed between the ground and the engine intake. The ground vortex leads to total pressure and swirl distortion, which reduces the performance of the engine. The inhalation of the dust and debris through a ground vortex can erode the fan blade, block the seals and degrade turbine cooling performance. As the diameter of the modern fan blade becomes larger, the clearance between the intake lip and the ground surface is smaller, which enhances the strength of the ground vortex. Though considerable numerical studies have been conducted with the predictions of the ground vortex, it is noted that the accurate simulation of the ground vortex is still a tough task. This paper presents authors’ simulation work of the ground vortex into an intake model with different crosswind speeds. This paper tackles the challenge with a parametric study to provide useful guidelines on how to obtain a good match with the experimental data. The influence of the mesh density, performance of different turbulence models and how the boundary layer thickness affects the prediction results are conducted and analysed. The detailed structure of the flow field with ground vortex is presented, which can shed light on the experimental observations. A number of suggestions are presented that can pave the road to the accurate flow field simulations with strong vorticities. Full article
Show Figures

Figure 1

14 pages, 3178 KB  
Article
Aeroacoustic and Aerodynamic Adjoint-Based Shape Optimization of an Axisymmetric Aero-Engine Intake
by Morteza Monfaredi, Varvara Asouti, Xenofon Trompoukis, Konstantinos Tsiakas and Kyriakos Giannakoglou
Aerospace 2023, 10(9), 743; https://doi.org/10.3390/aerospace10090743 - 22 Aug 2023
Cited by 1 | Viewed by 3024
Abstract
A continuous adjoint-based aeroacoustic optimization, based on a hybrid model including the Ffowcs Williams–Hawkings (FW–H) acoustic analogy, to account for the multidisciplinary design of aero-engine intakes with an axisymmetric geometry, is presented. To optimize such an intake, the generatrix of its lips is [...] Read more.
A continuous adjoint-based aeroacoustic optimization, based on a hybrid model including the Ffowcs Williams–Hawkings (FW–H) acoustic analogy, to account for the multidisciplinary design of aero-engine intakes with an axisymmetric geometry, is presented. To optimize such an intake, the generatrix of its lips is parameterized using B-Splines, and the energy contained in the sound pressure spectrum, at the blade passing frequency at receivers located axisymmetrically around the axis of the engine, is minimized. The engine is not included in the optimization and manifests its presence through an independently computed time-series of static pressure over the annular boundary of the simulation domain that corresponds to the inlet to the fan. Taking advantage of the case axisymmetry, the steady 3D RANS equations are solved in the rotating frame of reference and post-processed to compute the flow quantities’ time-series required by the FW–H analogy. The numerical solution of the unsteady flow equations and the otherwise excessive overall cost of the optimization are, thus, avoided. The objective function gradient is computed using the continuous adjoint method, coupled with the analytical differentiation of the FW–H analogy. The adjoint equations are also solved in the rotating frame via steady solver. Full article
(This article belongs to the Special Issue Adjoint Method for Aerodynamic Design and Other Applications in CFD)
Show Figures

Figure 1

Back to TopTop