Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = aero-engine bearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 224
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 211
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

13 pages, 2285 KiB  
Article
STHFD: Spatial–Temporal Hypergraph-Based Model for Aero-Engine Bearing Fault Diagnosis
by Panfeng Bao, Wenjun Yi, Yue Zhu, Yufeng Shen and Boon Xian Chai
Aerospace 2025, 12(7), 612; https://doi.org/10.3390/aerospace12070612 - 7 Jul 2025
Viewed by 297
Abstract
Accurate fault diagnosis in aerospace transmission systems is essential for ensuring equipment reliability and operational safety, especially for aero-engine bearings. However, current approaches relying on Convolutional Neural Networks (CNNs) for Euclidean data and Graph Convolutional Networks (GCNs) for non-Euclidean structures struggle to simultaneously [...] Read more.
Accurate fault diagnosis in aerospace transmission systems is essential for ensuring equipment reliability and operational safety, especially for aero-engine bearings. However, current approaches relying on Convolutional Neural Networks (CNNs) for Euclidean data and Graph Convolutional Networks (GCNs) for non-Euclidean structures struggle to simultaneously capture heterogeneous data properties and complex spatio-temporal dependencies. To address these limitations, we propose a novel Spatial–Temporal Hypergraph Fault Diagnosis framework (STHFD). Unlike conventional graphs that model pairwise relations, STHFD employs hypergraphs to represent high-order spatial–temporal correlations more effectively. Specifically, it constructs distinct spatial and temporal hyperedges to capture multi-scale relationships among fault signals. A type-aware hypergraph learning strategy is then applied to encode these correlations into discriminative embeddings. Extensive experiments on aerospace fault datasets demonstrate that STHFD achieves superior classification performance compared to state-of-the-art diagnostic models, highlighting its potential for enhancing intelligent fault detection in complex aerospace systems. Full article
Show Figures

Figure 1

24 pages, 37475 KiB  
Article
Synergistic WSET-CNN and Confidence-Driven Pseudo-Labeling for Few-Shot Aero-Engine Bearing Fault Diagnosis
by Shiqian Wu, Lifei Yang and Liangliang Tao
Processes 2025, 13(7), 1970; https://doi.org/10.3390/pr13071970 - 22 Jun 2025
Viewed by 287
Abstract
Reliable fault diagnosis in aero-engine bearing systems is essential for maintaining process stability and safety. However, acquiring fault samples in aerospace applications is costly and difficult, resulting in severely limited data for model training. Traditional methods often perform poorly under such constraints, lacking [...] Read more.
Reliable fault diagnosis in aero-engine bearing systems is essential for maintaining process stability and safety. However, acquiring fault samples in aerospace applications is costly and difficult, resulting in severely limited data for model training. Traditional methods often perform poorly under such constraints, lacking the ability to extract discriminative features or effectively correlate observed signal changes with underlying process faults. To address this challenge, this study presents a process-oriented framework—WSET-CNN-OOA-LSSVM—designed for effective fault recognition in small-sample scenarios. The framework begins with Wavelet Synchroextracting Transform (WSET), enhancing time–frequency resolution and capturing energy-concentrated fault signatures that reflect degradation along the process timeline. A tailored CNN with asymmetric pooling and progressive dropout preserves temporal dynamics while preventing overfitting. To compensate for limited labels, confidence-based pseudo-labeling is employed, guided by Mahalanobis distance and adaptive thresholds to ensure reliability. Classification is finalized using an Osprey Optimization Algorithm (OOA)-enhanced Least Squares SVM, which adapts decision boundaries to reflect subtle process state transitions. Validated on both test bench and real aero-engine data, the framework achieves 93.4% accuracy with only five fault samples per class and 100% in full-scale scenarios, outperforming eight existing methods. Therefore, the experimental results confirm that the proposed framework can effectively overcome the data scarcity challenge in aerospace bearing fault diagnosis, demonstrating its practical viability for few-shot learning applications in industrial condition monitoring. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

30 pages, 5714 KiB  
Article
Analysis of Unbalance Response and Vibration Reduction of an Aeroengine Gas Generator Rotor System
by Haibiao Zhang, Xing Heng, Ailun Wang, Tao Liu, Qingshan Wang and Kun Liu
Lubricants 2025, 13(6), 266; https://doi.org/10.3390/lubricants13060266 - 15 Jun 2025
Viewed by 438
Abstract
To ensure the vibration safety of rotor support systems in modern aeroengines, this study develops a dynamic model of the aeroengine gas generator rotor system and analyzes its complex unbalance response characteristics. Subsequently, it investigates vibration reduction strategies based on these response patterns. [...] Read more.
To ensure the vibration safety of rotor support systems in modern aeroengines, this study develops a dynamic model of the aeroengine gas generator rotor system and analyzes its complex unbalance response characteristics. Subsequently, it investigates vibration reduction strategies based on these response patterns. This study begins by developing individual dynamic models for the disk–blade system, the circular arc end-teeth connection structure and the squeeze film damper (SFD) support system. These models are then integrated using the differential quadrature finite element method (DQFEM) to create a comprehensive dynamic model of the gas generator rotor system. The unbalance response characteristics of the rotor system are calculated and analyzed, revealing the impact of the unbalance mass distribution and the combined support system characteristics on the unbalance response of the rotor system. Drawing on the obtained unbalance response patterns, the vibration reduction procedures for the rotor support system are explored and experimentally verified. The results demonstrate that the vibration response of the modern aeroengine rotor support system can be reduced by adjusting the unbalance mass distribution, decreasing the bearing stiffness and increasing the bearing damping, thereby enhancing the vibration safety of the rotor system. This study introduces a novel integration of DQFEM with detailed component-level modeling of circular arc end-teeth connections, disk–blade interactions and SFD dynamics. This approach uniquely captures the coupled effects of unbalance distribution and support system characteristics, offering a robust framework for enhancing vibration safety in aeroengine rotor systems. The methodology provides both theoretical insights and practical guidelines for optimizing rotor dynamic performance under unbalance-induced excitations. Full article
Show Figures

Figure 1

42 pages, 13512 KiB  
Article
Dynamic Characteristic Analysis of Angular Contact Ball Bearings with Two-Piece Inner Rings in Aero-Engine Main Shafts Under Unsteady-State Conditions
by Haisheng Yang, Qiang Liu and Si’er Deng
Lubricants 2025, 13(6), 249; https://doi.org/10.3390/lubricants13060249 - 30 May 2025
Viewed by 582
Abstract
The dynamic interactions among the internal components of aero-engine main shaft bearings under unsteady-state conditions are intricate, involving clearance collisions, contact, friction, and lubrication. The dynamic characteristics of bearings significantly influence the performance and stability of mechanical systems. This study establishes a rigid–flexible [...] Read more.
The dynamic interactions among the internal components of aero-engine main shaft bearings under unsteady-state conditions are intricate, involving clearance collisions, contact, friction, and lubrication. The dynamic characteristics of bearings significantly influence the performance and stability of mechanical systems. This study establishes a rigid–flexible coupling dynamic model for angular contact ball bearings with two-piece inner rings based on Hertz contact theory and lubrication theory. It systematically analyzes the dynamic characteristics of bearings under the coupling effects of acceleration, deceleration, and impact load. This study explores the influence of various loads, bearing speeds, and groove curvature radius coefficients on the dynamic characteristics of bearings. The findings indicate that the uniform speed phase of a bearing is highly responsive to impact load, followed by the deceleration phase, while the acceleration phase shows lower sensitivity to impact load. The groove curvature radius coefficient significantly affects the contact stress between the ball and its corresponding raceway, with contact stress increasing as the groove curvature radius coefficient rises. As the axial load decreases and the radial load, bearing speed, and groove curvature radius coefficient increase, there is a rise in pocket force, guiding force, and maximum equivalent stress of the flexible cage. Impact load leads to short-term intense fluctuations in the thickness of the bearing oil film, which can be alleviated by an increase in axial load. The oil film thickness firstly increases and then decreases with respect to the groove curvature radius coefficient. Furthermore, variations in bearing speed notably influence the thickness of the bearing oil film. This study analyzes the dynamic characteristics of bearings under the coupling effects of acceleration, deceleration, and impact load, offering insights for the design and optimization of angular contact ball bearings with two-piece inner rings. Full article
Show Figures

Figure 1

27 pages, 11587 KiB  
Article
Dynamics Analysis of Elastic Ring-Type Extruded Oil Film Damper Considering Time-Varying Characteristics
by Haibiao Zhang, Fuhua Liu, Tao Liu and Qingshan Wang
Materials 2025, 18(9), 1933; https://doi.org/10.3390/ma18091933 - 24 Apr 2025
Viewed by 330
Abstract
The elastic ring squeeze film damper (ERSFD), due to its compact structure and excellent mechanical properties, has been increasingly applied in various types of combination bearings for aero-engines. During operation, the force state of the elastic ring varies with different precession angles of [...] Read more.
The elastic ring squeeze film damper (ERSFD), due to its compact structure and excellent mechanical properties, has been increasingly applied in various types of combination bearings for aero-engines. During operation, the force state of the elastic ring varies with different precession angles of the journal, leading to changes in the stiffness of the elastic ring. This study, based on a bidirectional fluid–structure interaction (FSI) theory, analyzes the deformation and stiffness of the elastic ring under different contact conditions. The time-varying stiffness curve of the elastic ring is obtained, and the influence of various parameters on its time-varying stiffness characteristics is further investigated. An equivalent stiffness method for the elastic ring is proposed, which improves accuracy by more than 3% at low speeds compared to traditional methods. Using this equivalent method, the effects of parameters such as the number of ring protrusions, protrusion width, protrusion angle, elastic ring thickness, and oil film eccentricity on the pressure distribution of the inner and outer oil films are analyzed. The results indicate that an increase in the number of elastic rings, protrusion width, axial length, and ring thickness leads to a rise in stiffness, with the number of protrusions having the strongest effect and the axial length having the weakest effect. Additionally, as the number of protrusions, protrusion width, and protrusion angle increase, both the damping and stiffness of the inner and outer oil films decrease by approximately 10%, with a more significant impact on the outer oil film than on the inner oil film. When the axial length and oil film eccentricity increase, both the damping and stiffness of the inner and outer oil films also increase, with the inner oil film being highly sensitive to eccentricity. However, excessive eccentricity enhances the nonlinearity of the oil film. The findings of this study provide a theoretical foundation for the design, application, and maintenance of combination bearings incorporating elastic ring squeeze film dampers. Full article
Show Figures

Figure 1

18 pages, 7965 KiB  
Article
Research on the Lubrication State of the Contact Interface Under the Tilt and Skew State of the Roller of the Aviation Bearing
by Lina Zhou, Xiaofeng Yang, Zhigang Luo, Jingjing Zhang, Zhen Li and Xiaodong Wang
Lubricants 2025, 13(4), 174; https://doi.org/10.3390/lubricants13040174 - 10 Apr 2025
Viewed by 575
Abstract
The lubrication behavior and mechanical characteristics of the main bearing area of an aero-engine main shaft bearing determine the reliability and life of the main shaft bearing. In aero-engine main shaft bearings, the lubricant not only plays the role of lubrication but also [...] Read more.
The lubrication behavior and mechanical characteristics of the main bearing area of an aero-engine main shaft bearing determine the reliability and life of the main shaft bearing. In aero-engine main shaft bearings, the lubricant not only plays the role of lubrication but also affects the dynamic characteristics of the bearing; therefore, if the lubricant drag force is insufficient, it will lead to rolling body slipping. Slipping not only affects the reliability of the bearing operation but also will make the temperature of the contact area instantaneously increase, leading to the occurrence of gluing, scraping and other lubrication failure phenomena in the main bearing area. A lubricant under the shear conditions of traction characteristics is actually the external manifestation of rheological properties. Rheological properties are one of the elastic fluid power lubrication theories and are an important part of the study. Elasto-hydrodynamic lubrication theory of the oil film pressure, film thickness and temperature and solid domains interact to form a thermal–fluid–solid coupling relationship; this coupling relationship affects the main bearing area of the lubrication behavior and mechanical properties, thus affecting the lubrication state of the bearings and dynamic characteristics. With the continuous improvement of aero-engine performance requirements for main shaft bearings, it is of great significance to carry out a coupling study of the lubrication behavior and mechanical properties of the bearing contact zone under heavy load, high speed and high temperature conditions to improve the service performance, reliability and life of the bearings. Full article
Show Figures

Figure 1

22 pages, 5002 KiB  
Article
Thermal–Mechanical Coupling Model of a Double-Piece Inner Ring Ball Bearing Based on ADAMS Secondary Development
by Yujun Xue, Fanjing Meng, Yongjian Yu and Haichao Cai
Lubricants 2025, 13(4), 154; https://doi.org/10.3390/lubricants13040154 - 31 Mar 2025
Viewed by 442
Abstract
The double-piece inner ring ball bearing is an important part of an aero-engine. An excessive bearing temperature leads to bearing thermal expansion, lubricating oil performance degradation, and other problems that seriously affect the service life and reliability of the bearing. Thus, it is [...] Read more.
The double-piece inner ring ball bearing is an important part of an aero-engine. An excessive bearing temperature leads to bearing thermal expansion, lubricating oil performance degradation, and other problems that seriously affect the service life and reliability of the bearing. Thus, it is important to study the temperature field of a double-piece inner ring ball bearing. In this study, considering the heat exchange of lubricant circulating in the oil tank–tubing–bearing and the influence of the flow field in the bearing chamber on the bearing’s temperature rise, a modified transient thermal network equation for an oil tank–tubing–bearing system was established. Based on ADAMS software and considering the thermal–mechanical coupling effect on the bearing’s contact force, a thermal–mechanical coupling dynamic model for double-piece inner ring ball bearings was established. Combined with the bearing dynamics and modified transient thermal network equation, a thermal–mechanical coupling transient temperature field model for double-piece inner ring ball bearings was constructed. A temperature rise test was carried out on a double-piece inner ring ball bearing, and the accuracy of the bearing temperature rise simulation model was verified by the test results. The model can simulate the oil temperature change process, calculate the heat absorbed by the lubricating oil more accurately, and provide a theoretical basis for the design of bearing and lubrication systems. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

20 pages, 11411 KiB  
Article
Modeling and Nonlinear Dynamic Characteristics Analysis of Fault Bearing Time-Varying Stiffness-Flexible Rotor Coupling System
by Renzhen Chen, Jingyi Lv, Jing Tian, Yanting Ai, Fengling Zhang and Yudong Yao
Mathematics 2024, 12(22), 3591; https://doi.org/10.3390/math12223591 - 16 Nov 2024
Cited by 2 | Viewed by 1037
Abstract
There is a complex dynamic interaction between the aero-engine bearing and the rotor, and the resulting time-varying system parameters have an impact on the nonlinear dynamic characteristics of the rolling bearing-flexible rotor system. In this study, the interaction between the time-varying stiffness of [...] Read more.
There is a complex dynamic interaction between the aero-engine bearing and the rotor, and the resulting time-varying system parameters have an impact on the nonlinear dynamic characteristics of the rolling bearing-flexible rotor system. In this study, the interaction between the time-varying stiffness of the rolling bearing and the transient response of the flexible rotor is considered. The Newmark-β integral method is used to solve the dynamic equation, and the relationship between the time-varying characteristics of bearing stiffness and load and the dynamic characteristics of the rotor is studied. The relationship between bearing stiffness and vibration strength is analyzed, and the influence of damage size on the time domain signal energy of the disc is analyzed. The results show that the model established in this paper can accurately reflect the dynamic interaction between the bearing and the rotor. With the extension of the bearing damage, the dynamic stiffness of the bearing attenuates, the intensity of the excitation force increases, and the vibration is transmitted to the disc, which affects the motion stability and vibration response of the disc. Full article
Show Figures

Figure 1

16 pages, 9274 KiB  
Article
Investigation of the Corrosion–Wear Interaction Behavior of 8Cr4Mo4V Bearing Steel at Various Corrosion Intervals
by Chao Zhao, Lixia Ying, Chongyang Nie, Tianlin Zhu, Rongxiang Tang and Ruxin Liu
Coatings 2024, 14(10), 1245; https://doi.org/10.3390/coatings14101245 - 29 Sep 2024
Cited by 4 | Viewed by 1312
Abstract
The corrosion–wear coupling damage failure of 8Cr4Mo4V bearing steel under marine atmospheric conditions significantly limits aeroengine bearing applications. The present work aims to investigate the evolution of the corrosion–wear properties of 8Cr4Mo4V bearing steel at varied corrosion intervals and estimate the corrosion–wear interaction [...] Read more.
The corrosion–wear coupling damage failure of 8Cr4Mo4V bearing steel under marine atmospheric conditions significantly limits aeroengine bearing applications. The present work aims to investigate the evolution of the corrosion–wear properties of 8Cr4Mo4V bearing steel at varied corrosion intervals and estimate the corrosion–wear interaction (CWI) effect. Neutral salt spray tests combined with tribological experiments were employed to explore the effect of corrosion on wear and the influence of wear on corrosion, and a quantitative characterization method of corrosion–wear interactions was proposed by establishing the component relationships of material losses in the corrosion–wear process. The results indicate that the corrosion rates initially increase and then decrease, ultimately resulting in a pattern characterized by predominant total corrosion and nested localized corrosion. The corroded surfaces tremendously influence the friction coefficient curves at the third stage, and a synergistic acceleration effect exists in the CWI behavior of 8Cr4Mo4V bearing steel under the action of corrosion and wear. A sample corroded for 6 h displayed the significant facilitative effect of corrosion on wear, exhibiting the highest CWI ratio and a greater total mass loss primarily attributed to corrosion. This study offers a significant reference for the quantitative assessment of the tribo-corrosion properties of bearings in a marine atmospheric environment. Full article
Show Figures

Figure 1

16 pages, 6402 KiB  
Article
Innovative Bistable Composites for Aerospace and High-Stress Applications: Integrating Soft and Hard Materials in Experimental, Modeling, and Simulation Studies
by Khalid Zouhri, Mohamed Mohamed, Anil Erol, Bert Liu and Philip Appiah-Kubi
Materials 2024, 17(17), 4280; https://doi.org/10.3390/ma17174280 - 29 Aug 2024
Cited by 2 | Viewed by 1813
Abstract
This study explores the development and performance of bistable materials, emphasizing their potential applications in aero-vehicles and high-stress environments. By integrating soft and hard materials within a composite structure, the research demonstrates the creation of bistable composites that exhibit remarkable flexibility and rigidity. [...] Read more.
This study explores the development and performance of bistable materials, emphasizing their potential applications in aero-vehicles and high-stress environments. By integrating soft and hard materials within a composite structure, the research demonstrates the creation of bistable composites that exhibit remarkable flexibility and rigidity. Advanced simulations using COMSOL Multiphysics and 3D-printed prototypes reveal that these materials effectively absorb and dissipate stress, maintaining structural integrity under high-pressure conditions. Compression tests highlight the ability of bistable structures to bear significant loads, distributing stress efficiently across multiple layers. The innovative proposal of combining stiff and flexible materials within a single unit cell enhances bistable behavior, offering superior energy absorption and resilience. This work underscores the promise of bistable materials in advancing materials science, providing robust solutions for aerospace, automotive, and protective gear applications and paving the way for future research in optimizing bistable structures for diverse engineering challenges. Full article
Show Figures

Figure 1

27 pages, 14789 KiB  
Article
RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability
by Tongguang Yang, Xingyuan Huang, Yongjian Zhang, Jinglan Li, Xianwen Zhou and Qingkai Han
Mathematics 2024, 12(17), 2687; https://doi.org/10.3390/math12172687 - 29 Aug 2024
Cited by 1 | Viewed by 858
Abstract
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust [...] Read more.
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust aero engine bearings are prone to wear failure due to unbalanced or misaligned faults of the rotor system, especially in harsh environments, such as those at high operating loads and high rotation speeds, bearing wear can easily evolve into serious faults. Compared with aero engine fault diagnosis and RUL prediction, relatively little research has been conducted on bearing condition monitoring. In addition, considering how to evaluate future performance states with limited time series data is a key problem. At the same time, the current deep neural network model has the technical challenge of poor interpretability. In order to fill the above gaps, we developed a new framework of a residual space–time feature fusion focusing module named RTCA-Net, which focuses on solving the key problem. It is difficult to accurately monitor the wear state of aero engine inter-shaft bearings under special working conditions in practical engineering. Specifically, firstly, a residual space–time structure module was innovatively designed to capture the characteristic information of the metal dust signal effectively. Secondly, a feature-focusing module was designed. By adjusting the change in the weight coefficient during training, the RTCA-Net framework can select the more useful information for monitoring the wear condition of inter-shaft bearings. Finally, the experimental dataset of metal debris was verified and compared with seven other methods, such as the RTC-Net. The results showed that the proposed RTCA-Net framework has good generalization, superiority, and credibility. Full article
Show Figures

Figure 1

19 pages, 16336 KiB  
Article
Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network
by Jin Li, Zhengbing Yang, Xiang Zhou, Chenchen Song and Yafeng Wu
Aerospace 2024, 11(8), 613; https://doi.org/10.3390/aerospace11080613 - 26 Jul 2024
Cited by 3 | Viewed by 2100
Abstract
The precise monitoring of bearings is crucial for the timely detection of issues in rotating mechanical systems. However, the high complexity of the structures makes the paths of vibration signal transmission exceedingly intricate, posing significant challenges in diagnosing aero-engine bearing faults. Therefore, a [...] Read more.
The precise monitoring of bearings is crucial for the timely detection of issues in rotating mechanical systems. However, the high complexity of the structures makes the paths of vibration signal transmission exceedingly intricate, posing significant challenges in diagnosing aero-engine bearing faults. Therefore, a Rotational-Spectrum-informed Scale-aware Robustness (RSSR) neural network is proposed in this study to address intricate fault characteristics and significant noise interference. The RSSR algorithm amalgamates a scale-aware feature extraction block, a non-activation convolutional network, and an innovative channel attention block, striking a balance between simplicity and efficacy. We provide a comprehensive analysis by comparing traditional CNNs, transformers, and their respective variants. Our strategy not only elevates diagnostic precision but also judiciously moderates the network’s parameter count and computational intensity, mitigating the propensity for overfitting. To assess the efficacy of our proposed network, we performed rigorous testing using two complex, publicly available datasets, with additional artificial noise introductions to simulate challenging operational environments. On the noise-free dataset, our technique increased the accuracy by 5.11% on the aero-engine dataset compared with the current mainstream methods. Even under maximal noise conditions, it enhances the average accuracy by 4.49% compared with other contemporary approaches. The results demonstrate that our approach outperforms other techniques in terms of diagnostic performance and generalization ability. Full article
(This article belongs to the Special Issue Aircraft Structural Health Monitoring and Digital Twin)
Show Figures

Figure 1

14 pages, 3897 KiB  
Article
Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines
by Alireza Ebrahimi, Soheil Jafari and Theoklis Nikolaidis
Int. J. Turbomach. Propuls. Power 2024, 9(3), 25; https://doi.org/10.3390/ijtpp9030025 - 2 Jul 2024
Cited by 1 | Viewed by 2358
Abstract
The design complexity of the new generation of civil aero-engines results in higher demands on engines’ components, higher component temperatures, higher heat generation, and, finally, critical thermal management issues. This paper will propose a methodological approach to creating physics-based models for heat loads [...] Read more.
The design complexity of the new generation of civil aero-engines results in higher demands on engines’ components, higher component temperatures, higher heat generation, and, finally, critical thermal management issues. This paper will propose a methodological approach to creating physics-based models for heat loads developed by sources, as well as a systematic sensitivity analysis to identify the effects of design parameters on the thermal behavior of civil aero-engines. The ranges and levels of heat loads generated by heat sources (e.g., accessory gearbox, bearing, pumps, etc.) and the heat absorption capacity of heat sinks (e.g., engine fuel, oil, and air) are discussed systematically. The practical research challenges for thermal management system design and development for the new and next generation of turbofan engines will then be addressed through a sensitivity analysis of the heat load values as well as the heat sink flow rates. The potential solutions for thermal performance enhancements of propulsion systems will be proposed and discussed accordingly. Full article
Show Figures

Figure 1

Back to TopTop