Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (845)

Search Parameters:
Keywords = aerial point clouds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10524 KiB  
Article
Automating Three-Dimensional Cadastral Models of 3D Rights and Buildings Based on the LADM Framework
by Ratri Widyastuti, Deni Suwardhi, Irwan Meilano, Andri Hernandi and Juan Firdaus
ISPRS Int. J. Geo-Inf. 2025, 14(8), 293; https://doi.org/10.3390/ijgi14080293 - 28 Jul 2025
Viewed by 419
Abstract
Before the development of 3D cadastre, cadastral systems were based on 2D representations, which now require transformation or updating. In this context, the first issue is that existing 2D rights are not aligned with recent 3D data acquired using advanced technologies such as [...] Read more.
Before the development of 3D cadastre, cadastral systems were based on 2D representations, which now require transformation or updating. In this context, the first issue is that existing 2D rights are not aligned with recent 3D data acquired using advanced technologies such as Unmanned Aerial Vehicle–Light Detection and Ranging (UAV-LiDAR). The second issue is that point clouds of objects captured by UAV-LiDAR, such as fences and exterior building walls—are often neglected. However, these point cloud objects can be utilized to adjust 2D rights to correspond with recent 3D data and to update 3D building models with a higher level of detail. This research leverages such point cloud objects to automatically generate 3D rights and building models. By combining several algorithms, such as Iterative Closest Point (ICP), Random Forest (RF), Gaussian Mixture Model (GMM), Region Growing, the Polyfit method, and the orthogonality concept—an automatic workflow for generating 3D cadastral models is developed. The proposed workflow improves the horizontal accuracy of the updated 2D parcels from 1.19 m to 0.612 m. The floor area of the 3D models improves by approximately ±3 m2. Furthermore, the resulting 3D building models provide approximately 43% to 57% of the elements required for 3D property valuation. The case study of this research is in Indonesia. Full article
Show Figures

Figure 1

24 pages, 13416 KiB  
Article
Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal
by Leilson Ferreira, André Salgado de Andrade Sandim, Dalila Araújo Lopes, Joaquim João Sousa, Domingos Manuel Mendes Lopes, Maria Emília Calvão Moreira Silva and Luís Pádua
Land 2025, 14(7), 1460; https://doi.org/10.3390/land14071460 - 14 Jul 2025
Viewed by 347
Abstract
Accurate biomass estimation is important for forest management and climate change mitigation. This study evaluates the potential of using LiDAR (Light Detection and Ranging) data, acquired through Unmanned Aerial Vehicles (UAVs), for estimating above-ground and total biomass in Eucalyptus globulus and Pinus pinaster [...] Read more.
Accurate biomass estimation is important for forest management and climate change mitigation. This study evaluates the potential of using LiDAR (Light Detection and Ranging) data, acquired through Unmanned Aerial Vehicles (UAVs), for estimating above-ground and total biomass in Eucalyptus globulus and Pinus pinaster stands in central and northern Portugal. The acquired LiDAR point clouds were processed to extract structural metrics such as canopy height, crown area, canopy density, and volume. A multistep variable selection procedure was applied to reduce collinearity and select the most informative predictors. Multiple linear regression (MLR) models were developed and validated using field inventory data. Random Forest (RF) models were also tested for E. globulus, enabling a comparative evaluation between parametric and machine learning regression models. The results show that the 25th height percentile, canopy cover density at two meters, and height variance demonstrated an accurate biomass estimation for E. globulus, with coefficients of determination (R2) varying between 0.86 for MLR and 0.90 for RF. Although RF demonstrated a similar predictive performance, MLR presented advantages in terms of interpretability and computational efficiency. For P. pinaster, only MLR was applied due to the limited number of field data, yet R2 exceeded 0.80. Although absolute errors were higher for Pinus pinaster due to greater biomass variability, relative performance remained consistent across species. The results demonstrate the feasibility and efficiency of UAV LiDAR point cloud data for stand-level biomass estimation, providing simple and effective models for biomass estimation in these two species. Full article
Show Figures

Figure 1

21 pages, 12122 KiB  
Article
RA3T: An Innovative Region-Aligned 3D Transformer for Self-Supervised Sim-to-Real Adaptation in Low-Altitude UAV Vision
by Xingrao Ma, Jie Xie, Di Shao, Aiting Yao and Chengzu Dong
Electronics 2025, 14(14), 2797; https://doi.org/10.3390/electronics14142797 - 11 Jul 2025
Viewed by 294
Abstract
Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-Real Gap, where models trained exclusively on simulation data degrade under real-world variations in lighting, texture, and weather. To address this problem, we propose RA3T (Region-Aligned 3D Transformer), a novel self-supervised framework [...] Read more.
Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-Real Gap, where models trained exclusively on simulation data degrade under real-world variations in lighting, texture, and weather. To address this problem, we propose RA3T (Region-Aligned 3D Transformer), a novel self-supervised framework that enables robust Sim-to-Real adaptation. Specifically, we first develop a dual-branch strategy for self-supervised feature learning, integrating Masked Autoencoders and contrastive learning. This approach extracts domain-invariant representations from unlabeled simulated imagery to enhance robustness against occlusion while reducing annotation dependency. Leveraging these learned features, we then introduce a 3D Transformer fusion module that unifies multi-view RGB and LiDAR point clouds through cross-modal attention. By explicitly modeling spatial layouts and height differentials, this component significantly improves recognition of small and occluded targets in complex low-altitude environments. To address persistent fine-grained domain shifts, we finally design region-level adversarial calibration that deploys local discriminators on partitioned feature maps. This mechanism directly aligns texture, shadow, and illumination discrepancies which challenge conventional global alignment methods. Extensive experiments on UAV benchmarks VisDrone and DOTA demonstrate the effectiveness of RA3T. The framework achieves +5.1% mAP on VisDrone and +7.4% mAP on DOTA over the 2D adversarial baseline, particularly on small objects and sparse occlusions, while maintaining real-time performance of 17 FPS at 1024 × 1024 resolution on an RTX 4080 GPU. Visual analysis confirms that the synergistic integration of 3D geometric encoding and local adversarial alignment effectively mitigates domain gaps caused by uneven illumination and perspective variations, establishing an efficient pathway for simulation-to-reality UAV perception. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

22 pages, 4083 KiB  
Article
Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain
by Alberto López-Amoedo, Henrique Lorenzo, Carolina Acuña-Alonso and Xana Álvarez
Forests 2025, 16(7), 1140; https://doi.org/10.3390/f16071140 - 10 Jul 2025
Viewed by 263
Abstract
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. [...] Read more.
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. This study proposes a cost-effective strategy using open-access tools and data to characterize and estimate wood volume in these plantations. Two stratification approaches—classical and cluster-based—were compared to a modeling method based on Principal Component Analysis (PCA). Data came from open-access national LiDAR point clouds, acquired using manned aerial vehicles under the Spanish National Aerial Orthophoto Plan (PNOA). Moreover, two volume estimation methods were applied: one from the Xunta de Galicia (XdG) and another from Spain’s central administration (4IFN). A Generalized Linear Model (GLM) was also fitted using PCA-derived variables with logarithmic transformation. The results show that although overall volume estimates are similar across methods, cluster-based stratification yielded significantly lower absolute errors per hectare (XdG: 28.04 m3/ha vs. 44.07 m3/ha; 4IFN: 25.64 m3/ha vs. 38.22 m3/ha), improving accuracy by 7% over classical stratification. Moreover, it does not require precise field parcel locations, unlike PCA modeling. Both official volume estimation methods tended to overestimate stock by about 10% compared to PCA. These results confirm that clustering offers a practical, low-cost alternative that improves estimation accuracy by up to 18 m3/ha in fragmented forest landscapes. Full article
Show Figures

Figure 1

18 pages, 6847 KiB  
Article
Numerical Simulation of Slope Excavation and Stability Under Earthquakes in Cataclastic Loose Rock Mass of Hydropower Station on Lancang River
by Wenjing Liu, Hui Deng and Shuo Tian
Appl. Sci. 2025, 15(13), 7480; https://doi.org/10.3390/app15137480 - 3 Jul 2025
Viewed by 442
Abstract
This study investigates the excavation of the cataclastic loose rock slope at the mixing plant on the right bank of the BDa Hydropower Station, which is situated in the upper reaches of Lancang River. The dominant structural plane of the cataclastic loose rock [...] Read more.
This study investigates the excavation of the cataclastic loose rock slope at the mixing plant on the right bank of the BDa Hydropower Station, which is situated in the upper reaches of Lancang River. The dominant structural plane of the cataclastic loose rock mass was obtained using unmanned aerial vehicle tilt photography and 3D point cloud technology. The actual 3D numerical model of the study area was developed using the 3DEC discrete element numerical simulation software. The excavation response characteristics and overall stability of the cataclastic loose rock slope were analyzed. The support effect was evaluated considering the preliminary shaft micropile and Macintosh reinforced mat as slope support measures, and the stability was assessed by applying seismic waves. The results showed the main deformation and failure area after slope cleaning excavation at the junction of the cataclastic loose rock mass and Qedl deposits in the shallow surface of the excavation face. Moreover, the maximum total displacement could reach 18.3 cm. Subsequently, the overall displacement of the slope was significantly reduced, and the maximum total displacement decreased to 2.78 cm. The support effect was significant. Under an earthquake load, the slope with support exhibited considerable displacement in the shallow surface of the excavation slope, with collapse deformation primarily occurring through shear failure. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

33 pages, 15773 KiB  
Article
Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis
by Abdurahman Yasin Yiğit and Halil İbrahim Şenol
Drones 2025, 9(7), 472; https://doi.org/10.3390/drones9070472 - 2 Jul 2025
Cited by 1 | Viewed by 708
Abstract
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 [...] Read more.
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 and 2025, high-resolution images were combined with dense point clouds produced by Structure from Motion (SfM) methods. Iterative Closest Point (ICP) registration (RMSE = 2.09 cm) and Multiscale Model-to-Model Cloud Comparison (M3C2) analysis was used to quantify the surface changes. The study found a volumetric increase of 7744.04 m3 in the dump zones accompanied by an excavation loss of 8359.72 m3, so producing a net difference of almost 615.68 m3. Surface risk factors were evaluated holistically using a variety of morphometric criteria. These measures covered surface variation in several respects: their degree of homogeneity, presence of any unevenness or texture, verticality, planarity, and linearity. Surface variation > 0.20, roughness > 0.15, and verticality > 0.25 help one to identify zones of increased instability. Point cloud modeling derived from UAVs and GIS-based spatial analysis were integrated to show that morphological anomalies are spatially correlated with possible failure zones. Full article
Show Figures

Figure 1

21 pages, 3178 KiB  
Article
Using DAP-RPA Point Cloud-Derived Metrics to Monitor Restored Tropical Forests in Brazil
by Milton Marques Fernandes, Milena Viviane Vieira de Almeida, Marcelo Brandão José, Italo Costa Costa, Diego Campana Loureiro, Márcia Rodrigues de Moura Fernandes, Gilson Fernandes da Silva, Lucas Berenger Santana and André Quintão de Almeida
Forests 2025, 16(7), 1092; https://doi.org/10.3390/f16071092 - 1 Jul 2025
Viewed by 328
Abstract
Monitoring forest structure, diversity, and biomass in restoration areas is both expensive and time-consuming. Metrics derived from digital aerial photogrammetry (DAP) may offer a cost-effective and efficient alternative for monitoring forest restoration. The main objective of this study was to use metrics derived [...] Read more.
Monitoring forest structure, diversity, and biomass in restoration areas is both expensive and time-consuming. Metrics derived from digital aerial photogrammetry (DAP) may offer a cost-effective and efficient alternative for monitoring forest restoration. The main objective of this study was to use metrics derived from digital aerial photogrammetry (DAP) point clouds obtained by remotely piloted aircraft (RPA) to estimate aboveground biomass (AGB), species diversity, and structural variables for monitoring restored secondary tropical forest areas. The study was conducted in three active and one passive forest restoration systems located in a secondary forest in Sergipe state, Brazil. A total of 2507 tree individuals from 36 plots (0.0625 ha each) were identified, and their total height (ht) and diameter at breast height (dbh) were measured in the field. Concomitantly with the field inventory, the plots were mapped using an RPA, and traditional height-based point cloud metrics and Fourier transform-derived metrics were extracted for each plot. Regression models were developed to calculate AGB, Shannon diversity index (H′), ht, dbh, and basal area (ba). Furthermore, multivariate statistical analyses were used to characterize AGB and H′ in the different restoration systems. All fitted models selected Fourier transform-based metrics. The AGB estimates showed satisfactory accuracy (R2 = 0.88; RMSE = 31.2%). The models for H′ and ba also performed well, with R2 values of 0.90 and 0.67 and RMSEs of 24.8% and 20.1%, respectively. Estimates of structural variables (dbh and ht) showed high accuracy, with RMSE values close to 10%. Metrics derived from the Fourier transform were essential for estimating AGB, species diversity, and forest structure. The DAP-RPA-derived metrics used in this study demonstrate potential for monitoring and characterizing AGB and species richness in restored tropical forest systems. Full article
Show Figures

Figure 1

18 pages, 13123 KiB  
Article
Field Study of UAV Variable-Rate Spraying Method for Orchards Based on Canopy Volume
by Pengchao Chen, Haoran Ma, Zongyin Cui, Zhihong Li, Jiapei Wu, Jianhong Liao, Hanbing Liu, Ying Wang and Yubin Lan
Agriculture 2025, 15(13), 1374; https://doi.org/10.3390/agriculture15131374 - 27 Jun 2025
Viewed by 490
Abstract
The use of unmanned aerial vehicle (UAV) pesticide spraying technology in precision agriculture is becoming increasingly important. However, traditional spraying methods struggle to address the precision application need caused by the canopy differences of fruit trees in orchards. This study proposes a UAV [...] Read more.
The use of unmanned aerial vehicle (UAV) pesticide spraying technology in precision agriculture is becoming increasingly important. However, traditional spraying methods struggle to address the precision application need caused by the canopy differences of fruit trees in orchards. This study proposes a UAV orchard variable-rate spraying method based on canopy volume. A DJI M300 drone equipped with LiDAR was used to capture high-precision 3D point cloud data of tree canopies. An improved progressive TIN densification (IPTD) filtering algorithm and a region-growing algorithm were applied to segment the point cloud of fruit trees, construct a canopy volume-based classification model, and generate a differentiated prescription map for spraying. A distributed multi-point spraying strategy was employed to optimize droplet deposition performance. Field experiments were conducted in a citrus (Citrus reticulata Blanco) orchard (73 trees) and a litchi (Litchi chinensis Sonn.) orchard (82 trees). Data analysis showed that variable-rate treatment in the litchi area achieved a maximum canopy coverage of 14.47% for large canopies, reducing ground deposition by 90.4% compared to the continuous spraying treatment; variable-rate treatment in the citrus area reached a maximum coverage of 9.68%, with ground deposition reduced by approximately 64.1% compared to the continuous spraying treatment. By matching spray volume to canopy demand, variable-rate spraying significantly improved droplet deposition targeting, validating the feasibility of the proposed method in reducing pesticide waste and environmental pollution and providing a scalable technical path for precision plant protection in orchards. Full article
(This article belongs to the Special Issue Smart Spraying Technology in Orchards: Innovation and Application)
Show Figures

Figure 1

24 pages, 1151 KiB  
Article
EKNet: Graph Structure Feature Extraction and Registration for Collaborative 3D Reconstruction in Architectural Scenes
by Changyu Qian, Hanqiang Deng, Xiangrong Ni, Dong Wang, Bangqi Wei, Hao Chen and Jian Huang
Appl. Sci. 2025, 15(13), 7133; https://doi.org/10.3390/app15137133 - 25 Jun 2025
Viewed by 289
Abstract
Collaborative geometric reconstruction of building structures can significantly reduce communication consumption for data sharing, protect privacy, and provide support for large-scale robot application management. In recent years, geometric reconstruction of building structures has been partially studied, but there is a lack of alignment [...] Read more.
Collaborative geometric reconstruction of building structures can significantly reduce communication consumption for data sharing, protect privacy, and provide support for large-scale robot application management. In recent years, geometric reconstruction of building structures has been partially studied, but there is a lack of alignment fusion studies for multi-UAV (Unmanned Aerial Vehicle)-reconstructed geometric structure models. The vertices and edges of geometric structure models are sparse, and existing methods face challenges such as low feature extraction efficiency and substantial data requirements when processing sparse graph structures after geometrization. To address these challenges, this paper proposes an efficient deep graph matching registration framework that effectively integrates interpretable feature extraction with network training. Specifically, we first extract multidimensional local properties of nodes by combining geometric features with complex network features. Next, we construct a lightweight graph neural network, named EKNet, to enhance feature representation capabilities, enabling improved performance in low-overlap registration scenarios. Finally, through feature matching and discrimination modules, we effectively eliminate incorrect pairings and enhance accuracy. Experiments demonstrate that the proposed method achieves a 27.28% improvement in registration speed compared to traditional GCN (Graph Convolutional Neural Networks) and an 80.66% increase in registration accuracy over the suboptimal method. The method exhibits strong robustness in registration for scenes with high noise and low overlap rates. Additionally, we construct a standardized geometric point cloud registration dataset. Full article
Show Figures

Figure 1

19 pages, 3618 KiB  
Article
Comparison of Advanced Terrestrial and Aerial Remote Sensing Methods for Above-Ground Carbon Stock Estimation—A Comparative Case Study for a Hungarian Temperate Forest
by Botond Szász, Bálint Heil, Gábor Kovács, Diána Mészáros and Kornél Czimber
Remote Sens. 2025, 17(13), 2173; https://doi.org/10.3390/rs17132173 - 25 Jun 2025
Viewed by 441
Abstract
The increasing pace of climate-driven changes in forest ecosystems calls for reliable remote sensing techniques for quantifying above-ground carbon storage. In this article, we compare the methodology and results of traditional field surveys, mobile laser scanning, optical drone imaging and photogrammetry, and both [...] Read more.
The increasing pace of climate-driven changes in forest ecosystems calls for reliable remote sensing techniques for quantifying above-ground carbon storage. In this article, we compare the methodology and results of traditional field surveys, mobile laser scanning, optical drone imaging and photogrammetry, and both drone-based and light aircraft-based aerial laser scanning to determine forest stand parameters, which are suitable to estimate carbon stock. Measurements were conducted at four designated sampling points established during a large-scale project in deciduous and coniferous tree stands of the Dudles Forest, Hungary. The results of the surveys were first compared spatially and quantitatively, followed by a summary of the advantages and disadvantages of each method. The mobile laser scanner proved to be the most accurate, while optical surveying—enhanced with a new diameter measurement methodology based on detecting stem positions from the photogrammetric point cloud and measuring the diameter directly on the orthorectified images—also delivered promising results. Aerial laser scanning was the least accurate but provided coverage over large areas. Based on the results, we recommend adapting our carbon stock estimation methodology primarily to mobile laser scanning surveys combined with aerial laser scanned data. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

17 pages, 6547 KiB  
Article
Direct Estimation of Forest Aboveground Biomass from UAV LiDAR and RGB Observations in Forest Stands with Various Tree Densities
by Kangyu So, Jenny Chau, Sean Rudd, Derek T. Robinson, Jiaxin Chen, Dominic Cyr and Alemu Gonsamo
Remote Sens. 2025, 17(12), 2091; https://doi.org/10.3390/rs17122091 - 18 Jun 2025
Viewed by 875
Abstract
Canada’s vast forests play a substantial role in the global carbon balance but require laborious and expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial vehicles (UAVs) may [...] Read more.
Canada’s vast forests play a substantial role in the global carbon balance but require laborious and expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial vehicles (UAVs) may address scalability limitations associated with traditional forest inventory but require simple forest structures or large sets of manually delineated crowns. Here, we introduce a deep learning approach for crown delineation and AGB estimation reproducible for complex forest structures without relying on hand annotations for training. Firstly, we detect treetops and delineate crowns with a LiDAR point cloud using marker-controlled watershed segmentation (MCWS). Then we train a deep learning model on annotations derived from MCWS to make crown predictions on UAV red, blue, and green (RGB) tiles. Finally, we estimate AGB metrics from tree height- and crown diameter-based allometric equations, all derived from UAV data. We validate our approach using 14 ha mixed forest stands with various experimental tree densities in Southern Ontario, Canada. Our results show that using an unsupervised LiDAR-only algorithm for tree crown delineation alongside a self-supervised RGB deep learning model trained on LiDAR-derived annotations leads to an 18% improvement in AGB estimation accuracy. In unharvested stands, the self-supervised RGB model performs well for height (adjusted R2, Ra2 = 0.79) and AGB (Ra2 = 0.80) estimation. In thinned stands, the performance of both unsupervised and self-supervised methods varied with stand density, crown clumping, canopy height variation, and species diversity. These findings suggest that MCWS can be supplemented with self-supervised deep learning to directly estimate biomass components in complex forest structures as well as atypical forest conditions where stand density and spatial patterns are manipulated. Full article
Show Figures

Figure 1

12 pages, 4285 KiB  
Article
Intelligent Recognition of Rock Mass Discontinuities on the Basis of RGB-Enhanced Point Cloud Features
by Honghai Cui, Junqi Chen, Xinyue Wang, Zihan Zhao, Jiali Han, Qi Sun and Wen Zhang
Appl. Sci. 2025, 15(12), 6510; https://doi.org/10.3390/app15126510 - 10 Jun 2025
Viewed by 340
Abstract
Rock slopes, composed of intact rock masses and relatively weak discontinuities, exhibit stability primarily governed by the spatial distribution of these discontinuities. Under the framework of structural control theory, acquiring discontinuity information is a fundamental prerequisite for rock slope stability analysis. However, advancements [...] Read more.
Rock slopes, composed of intact rock masses and relatively weak discontinuities, exhibit stability primarily governed by the spatial distribution of these discontinuities. Under the framework of structural control theory, acquiring discontinuity information is a fundamental prerequisite for rock slope stability analysis. However, advancements in measurement methods have significantly enhanced slope modeling precision while paradoxically reducing the efficiency of discontinuity data acquisition. To address this challenge, this study proposes a novel discontinuity identification method on the basis of high-precision UAV (unmanned aerial vehicle) point clouds, integrating principal component analysis (PCA), multi-channel gradient fusion, and cascaded edge detection techniques. Applying this approach, a high-resolution UAV-derived 3D model was constructed, and surface discontinuities were systematically identified for a slope case study in the North Qinling Belt, Shanxi Province, China. Results demonstrate that the proposed method achieves effective discontinuity identification performance, cumulatively detecting 1401 discontinuities. Statistical analysis of the identified discontinuities reveals three dominant orientation groups: I: S085° E/80°, II: S015° W/15°, and III: S005° W/85°. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 33456 KiB  
Article
Evolution of Rockfall Based on Structure from Motion Reconstruction of Street View Imagery and Unmanned Aerial Vehicle Data: Case Study from Koto Panjang, Indonesia
by Tiggi Choanji, Michel Jaboyedoff, Yuniarti Yuskar, Anindita Samsu, Li Fei and Marc-Henri Derron
Remote Sens. 2025, 17(11), 1888; https://doi.org/10.3390/rs17111888 - 29 May 2025
Viewed by 501
Abstract
This study explores the growing application of 3D remote sensing in geohazard studies, particularly for rock slope monitoring. It highlights the use of cost-effective Street View Imagery (SVI) and Unmanned Aerial Vehicles (UAV) through Structure-from-Motion (SfM) photogrammetry as tools for 3D rockfall monitoring. [...] Read more.
This study explores the growing application of 3D remote sensing in geohazard studies, particularly for rock slope monitoring. It highlights the use of cost-effective Street View Imagery (SVI) and Unmanned Aerial Vehicles (UAV) through Structure-from-Motion (SfM) photogrammetry as tools for 3D rockfall monitoring. Using multi-temporal SVI and UAV Imagery from the Koto Panjang cliff in Indonesia, we quantify rockfall volume changes over seven years and assess associated geohazards. The results reveal a total rockfall retreat of 5270 m3, with an average annual rate of 7.53 m3/year. Structural analysis identified six major discontinuity sets and confirmed inherent instability within the rock mass. Kinematic simulations using SVI and UAV-derived data further assessed rockfall trajectories and potential impact zones. Results indicate that 40% of simulated rockfall deposits accumulated near existing roads, with significant differences in distribution based on scree slope angles. This emphasizes the role of scree slope in influencing rockfall propagation. In conclusion, SVI and UAV imagery presents a valuable tool for 3D point cloud reconstruction and rockfall hazard assessment, particularly in areas lacking historical data. The study showcases the effectiveness of using SVI and UAV imagery in quantifying historical past rockfall volume and identifies critical areas for mitigation strategies, highlighting the importance of scree slope angle in managing rockfall hazard. Full article
Show Figures

Figure 1

31 pages, 99149 KiB  
Article
Optimizing Camera Settings and Unmanned Aerial Vehicle Flight Methods for Imagery-Based 3D Reconstruction: Applications in Outcrop and Underground Rock Faces
by Junsu Leem, Seyedahmad Mehrishal, Il-Seok Kang, Dong-Ho Yoon, Yulong Shao, Jae-Joon Song and Jinha Jung
Remote Sens. 2025, 17(11), 1877; https://doi.org/10.3390/rs17111877 - 28 May 2025
Viewed by 689
Abstract
The structure from motion (SfM) and multiview stereo (MVS) techniques have proven effective in generating high-quality 3D point clouds, particularly when integrated with unmanned aerial vehicles (UAVs). However, the impact of image quality—a critical factor for SfM–MVS techniques—has received limited attention. This study [...] Read more.
The structure from motion (SfM) and multiview stereo (MVS) techniques have proven effective in generating high-quality 3D point clouds, particularly when integrated with unmanned aerial vehicles (UAVs). However, the impact of image quality—a critical factor for SfM–MVS techniques—has received limited attention. This study proposes a method for optimizing camera settings and UAV flight methods to minimize point cloud errors under illumination and time constraints. The effectiveness of the optimized settings was validated by comparing point clouds generated under these conditions with those obtained using arbitrary settings. The evaluation involved measuring point-to-point error levels for an indoor target and analyzing the standard deviation of cloud-to-mesh (C2M) and multiscale model-to-model cloud comparison (M3C2) distances across six joint planes of a rock mass outcrop in Seoul, Republic of Korea. The results showed that optimal settings improved accuracy without requiring additional lighting or extended survey time. Furthermore, we assessed the performance of SfM–MVS under optimized settings in an underground tunnel in Yeoju-si, Republic of Korea, comparing the resulting 3D models with those generated using Light Detection and Ranging (LiDAR). Despite challenging lighting conditions and time constraints, the results suggest that SfM–MVS with optimized settings has the potential to produce 3D models with higher accuracy and resolution at a lower cost than LiDAR in such environments. Full article
Show Figures

Graphical abstract

21 pages, 5217 KiB  
Article
Urban Tree Species Identification Based on Crown RGB Point Clouds Using Random Forest and PointNet
by Diego Pacheco-Prado, Esteban Bravo-López, Emanuel Martínez and Luis Á. Ruiz
Remote Sens. 2025, 17(11), 1863; https://doi.org/10.3390/rs17111863 - 27 May 2025
Viewed by 1685
Abstract
The management and identification of forest species in a city are essential tasks for current administrations, particularly in planning urban green spaces. However, the cost and time required are typically high. This study evaluates the potential of RGB point clouds captured by unnamed [...] Read more.
The management and identification of forest species in a city are essential tasks for current administrations, particularly in planning urban green spaces. However, the cost and time required are typically high. This study evaluates the potential of RGB point clouds captured by unnamed aerial vehicles (UAVs) for automating tree species classification. A dataset of 809 trees (crowns) for eight species was analyzed using a random forest classifier and deep learning with PointNet and PointNet++. In the first case, eleven variables such as the normalized red–blue difference index (NRBDI), intensity, brightness (BI), Green Leaf Index (GLI), points density (normalized), and height (maximum and percentiles 10, 50, and 90), produced the highest reliability values, with an overall accuracy of 0.70 and a Kappa index of 0.65. In the second case, the PointNet model had an overall accuracy of 0.62, and 0.64 with PointNet++; using the features Z, red, green, blue, NRBDI, intensity, and BI. Likewise, there was a high accuracy in the identification of the species Populus alba L., and Melaleuca armillaris (Sol. ex Gaertn.) Sm. This work contributes to a cost-effective workflow for urban tree monitoring using UAV data, comparing classical machine learning with deep learning approaches and analyzing the trade-offs. Full article
Show Figures

Figure 1

Back to TopTop