Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = adiponitrile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1902 KiB  
Article
Upcycled Composite Derived from Polyacrylonitrile and Elemental Sulfur: Thermomechanical Properties and Microstructural Insight
by Shalini K. Wijeyatunga and Rhett C. Smith
Sustainability 2025, 17(8), 3702; https://doi.org/10.3390/su17083702 - 19 Apr 2025
Viewed by 649
Abstract
Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and [...] Read more.
Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and tensile strengths comparable to or exceeding some common construction materials, including C62 brick. Comparison to other plastic-derived HSMs indicates that PANS90 exhibits mechanical properties including compressional strength (11.4 MPa), flexural strength (3.6 MPa) and tensile strength (2.5 MPa) within a similar or slightly improved range. Mechanistic investigations using small-molecule analogs (e.g., adiponitrile) suggest that thiophene ring formation and radical-driven sulfur–carbon bond formation are key reaction pathways, contributing to the composite’s crosslinked microstructure. Preliminary life cycle assessments estimate a global warming potential for PANS90 (0.33 kg CO2e/kg) that is about three times lower than that of Ordinary Portland Cement, underscoring its reduced environmental footprint. Overall, this sulfur-based upcycling strategy addresses two pressing waste-management concerns—surplus sulfur from petroleum refining and unrecycled PAN—while furnishing robust composites suitable for applications ranging from lightweight construction materials to specialty polymer systems. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

12 pages, 3488 KiB  
Article
Synchronously Stabilizing the Interphase of Cathode and Anode Enabling Lithium Metal Batteries via Multiple Electrolyte Additives
by Yi Wan, Weihang Bai, Shun Wu, Che Sun, Shuaishuai Chen, Yinping Qin, Muqin Wang, Zhenlian Chen, Mingkui Wang and Deyu Wang
Batteries 2024, 10(10), 338; https://doi.org/10.3390/batteries10100338 - 24 Sep 2024
Viewed by 1528
Abstract
As the most promising high energy density technology, lithium metal batteries are associated with serious interfacial challenges because the electrolytes employed are unable to meet the requirements of both electrodes simultaneously, namely, the systems that work for Li metal are highly likely to [...] Read more.
As the most promising high energy density technology, lithium metal batteries are associated with serious interfacial challenges because the electrolytes employed are unable to meet the requirements of both electrodes simultaneously, namely, the systems that work for Li metal are highly likely to be unsuitable for the cathode, and vice versa. In this study, we investigate the synergistic effects of lithium bis (oxalate) borate (LiBOB), fluoroethylene carbonate (FEC) and adiponitrile (ADN) to develop a formula that is compatible with both elements in the battery. The solid–electrolyte interphase (SEI) multi-layer generated from LiBOB and FEC successfully protects the electrolyte from the lithium and suppresses the decomposition of ADN on lithium, identified by the tiny amounts of isonitriles on the surface of the anode. Simultaneously, most of the ADN molecules remain and protect the cathode particles via the absorption layer of the nitrile groups, in the same way that this process works in commercial lithium-ion batteries. Benefiting from the stable interfacial films formed synchronously on the anode and cathode, the Li/LiNi0.8Co0.1Mn0.1O2 cells with an area capacity of ~3 mAh cm−2 operate stably beyond 250 cycles and target the accumulated capacity to levels as high as ~653.4 mAh cm−2. Our approach demonstrates that electrolyte engineering with known additives is a practical strategy for addressing the challenges of lithium batteries. Full article
Show Figures

Figure 1

15 pages, 10629 KiB  
Article
Selective Hydrogenation of Adiponitrile to 6-Aminocapronitrile over Ni/α-Al2O3 Catalysts Doped with K2O and La2O3
by Lei Zhao, Caiyun Wang, Jixiang Chen, Ziyang Nie, Jiyan Zhang and Xuebin Lu
Catalysts 2023, 13(6), 934; https://doi.org/10.3390/catal13060934 - 25 May 2023
Cited by 2 | Viewed by 2064
Abstract
A series of Ni/Al2O3, Ni/K2O-Al2O3 and Ni/La2O3-K2O-Al2O3 catalysts that possess high activities for partial hydrogenation of adiponitrile to 6-aminocapronitrile has been successfully synthesized by the [...] Read more.
A series of Ni/Al2O3, Ni/K2O-Al2O3 and Ni/La2O3-K2O-Al2O3 catalysts that possess high activities for partial hydrogenation of adiponitrile to 6-aminocapronitrile has been successfully synthesized by the impregnation method. The catalytic performance was investigated under atmospheric pressure and in the absence of ammonia and a significant enhancement in the activity after the introduction of potassium oxide and lanthana was observed. Aiming to study the influence of K2O and La2O3 promoters on the physicochemical properties, we characterized the catalysts by N2 adsorption/desorption, XRD, H2-TPR, H2-chemisorption, H2-TPD and TEM techniques. A combination of XRD, TEM and H2-chemisorption showed that Ni0 particles with a higher dispersion are obtained after the addition of La2O3. Compared with the Ni/Al2O3 catalyst, the Ni/La2O3-K2O-Al2O3 catalyst with an appropriate amount of promoter enjoys a more catalyst surface alkalescence, enhances the electronic density of nickel and higher dispersion of nickel and exhibits higher activity and 6-aminocapronitrile selectivity than Ni/α-Al2O3 during the hydrogenation of adiponitrile in the absence of ammonia, i.e., K2O and La2O3 improved the performance of the nickel-based catalyst. Full article
Show Figures

Figure 1

19 pages, 6678 KiB  
Article
Investigation on High-Viscosity Chemical Waste Liquid Atomizer Based on VOF-DPM
by Haoyu Ou, Lei Su, Yang Shi and Shijie Ruan
Energies 2023, 16(7), 3109; https://doi.org/10.3390/en16073109 - 29 Mar 2023
Cited by 11 | Viewed by 2635
Abstract
The viscosity of adiponitrile waste liquid is as high as 1000 cp. It is challenging to spray and atomize the waste liquid normally. Based on the coaxial three-channel pneumatic atomizer, a two-stage supersonic steam atomizer is proposed in this paper, and the atomization [...] Read more.
The viscosity of adiponitrile waste liquid is as high as 1000 cp. It is challenging to spray and atomize the waste liquid normally. Based on the coaxial three-channel pneumatic atomizer, a two-stage supersonic steam atomizer is proposed in this paper, and the atomization process is simulated by Fluent software. Compared with the traditional atomization simulation method, the Volume-of-Fluid to Discrete-Phase-Model (VOF-DPM) bi-directional coupling model and Adaptive Mesh Refinement (AMR) technology can save mesh and improve the computational efficiency. The atomization processes of primary breakup and secondary breakup are entirely captured and analyzed. The results show that the Sauter Mean Diameter (SMD) is about 116–180 μm, the SMD decreases with the increase of steam inlet absolute pressure, and the atomization quality can meet the combustion requirements. This study can be used for the performance optimization of the high-viscosity liquid atomizers in the chemical and aerospace industry and shorten the time engineers spend in the simulation calculation to verify the rationality of the structure. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

17 pages, 3606 KiB  
Article
Paired Electrolysis of Acrylonitrile and 5-Hydroxymethylfurfural for Simultaneous Generation of Adiponitrile and 2,5-Furandicarboxylic Acid
by Ji Qi, Ziying An, Xiao Chen, Chuang Li, Yan Du, Xiuhong Zhang and Changhai Liang
Catalysts 2022, 12(7), 694; https://doi.org/10.3390/catal12070694 - 24 Jun 2022
Cited by 3 | Viewed by 3630
Abstract
The classic acrylonitrile (AN) electrohydrodimerization (EHD) to adiponitrile (ADN) process produces oxygen on the anode side. The oxygen evolution reaction (OER) is energy consuming, and O2 is of low value and has security issues while directly contacting with organic molecules. Herein, by [...] Read more.
The classic acrylonitrile (AN) electrohydrodimerization (EHD) to adiponitrile (ADN) process produces oxygen on the anode side. The oxygen evolution reaction (OER) is energy consuming, and O2 is of low value and has security issues while directly contacting with organic molecules. Herein, by replacing OER with 5-hydroxymethylfurfural oxidation reaction (HMFOR), we report paired electrolysis of AN and HMF for simultaneous generation of ADN and 2,5-furandicarboxylic acid (FDCA). On the anode side, the electrodeposited amorphous NiMoP film-covered nickel foam efficiently boosted HMFOR activity by enlarging the electrochemically active surface area (ECSA) via in situ selective removal of Mo and P on the surface. On the cathode side, addition of dimethylformamide (DMF) as a cosolvent enhanced the reaction efficiency of ANEHD by forming a single-phase electrolyte that offers better interaction between AN and the electrode. The ANEHD–HMFOR paired system shows excellent generation rates of FDCA (0.018 gFDCA·h−1·cm−2) and ADN (0.017 gADN·h−1·cm−2) at a high cell current (160 mA). An amount of 1 kWh of electricity can produce 2.91 mol of ADN and 0.53 mol of FDCA with 107.1% Faraday efficiency. Full article
(This article belongs to the Special Issue Electrocatalysts for Oxidation-Reduction Reactions)
Show Figures

Graphical abstract

14 pages, 3594 KiB  
Article
Rational Screening of High-Voltage Electrolytes and Additives for Use in LiNi0.5Mn1.5O4-Based Li-Ion Batteries
by Oleg A. Drozhzhin, Vitalii A. Shevchenko, Zoia V. Bobyleva, Anastasia M. Alekseeva and Evgeny V. Antipov
Molecules 2022, 27(11), 3596; https://doi.org/10.3390/molecules27113596 - 3 Jun 2022
Cited by 5 | Viewed by 3321
Abstract
In the present work, we focus onthe experimental screening of selected electrolytes, which have been reported earlier in different works, as a good choice for high-voltage Li-ion batteries. Twenty-four solutions were studied by means of their high-voltage stability in lithium half-cells with idle [...] Read more.
In the present work, we focus onthe experimental screening of selected electrolytes, which have been reported earlier in different works, as a good choice for high-voltage Li-ion batteries. Twenty-four solutions were studied by means of their high-voltage stability in lithium half-cells with idle electrode (C+PVDF) and the LiNi0.5Mn1.5O4-based composite as a positive electrode. Some of the solutions were based on the standard 1 M LiPF6 in EC:DMC:DEC = 1:1:1 with/without additives, such as fluoroethylene carbonate, lithium bis(oxalate) borate and lithium difluoro(oxalate)borate. More concentrated solutions of LiPF6 in EC:DMC:DEC = 1:1:1 were also studied. In addition, the solutions of LiBF4 and LiPF6 in various solvents, such as sulfolane, adiponitrile and tris(trimethylsilyl) phosphate, atdifferent concentrations were investigated. A complex study, including cyclic voltammetry, galvanostatic cycling, impedance spectroscopy and ex situ PXRD and EDX, was applied for the first time to such a wide range of electrolytesto provide an objective assessment of the stability of the systems under study. We observed a better anodic stability, including a slower capacity fading during the cycling and lower charge transfer resistance, for the concentrated electrolytes and sulfolane-based solutions. Among the studied electrolytes, the concentrated LiPF6 in EC:DEC:DMC = 1:1:1 performed the best, since it provided both low SEI resistance and stability of the LiNi0.5Mn1.5O4 cathode material. Full article
Show Figures

Graphical abstract

12 pages, 4065 KiB  
Article
Effect of High-Voltage Additives on Formation of Solid Electrolyte Interphases in Lithium-Ion Batteries
by Minjing Chen, Yunbo Huang, Zhepu Shi, Hao Luo, Zhaoping Liu and Cai Shen
Materials 2022, 15(10), 3662; https://doi.org/10.3390/ma15103662 - 20 May 2022
Cited by 9 | Viewed by 3752
Abstract
Solid electrolyte interphase (SEI) formed at the interface in lithium-ion batteries plays an important role in isolating electrons and permeating ions during charging/discharging processes. Therefore, the formation of a good interface is crucial for better battery performance. In this study, additives based on [...] Read more.
Solid electrolyte interphase (SEI) formed at the interface in lithium-ion batteries plays an important role in isolating electrons and permeating ions during charging/discharging processes. Therefore, the formation of a good interface is crucial for better battery performance. In this study, additives based on adiponitrile (ADN) and trimethyl borate (TMB) were employed to broaden the electrochemical window and form a good SEI layer. Electrochemical Atomic force microscopy (EC-AFM) was used for in situ studies of film-formation mechanisms in high-voltage electrolytes on high-temperature pyrolytic graphite (HOPG), as well as Li- and Mn-rich (LMR) materials. X-ray photoelectron spectroscopy (XPS) combined with electrochemical methods revealed a synergistic reaction between the two additives to form a more stable interfacial film during charging/discharging processes to yield assembled batteries with improved cycle performance, its capacity increased from below 100 mAh/g to 200 mAh/g after 50 cycles. In sum, these findings would have great significance for the development of high voltage lithium-ion batteries with enhanced performance. Full article
(This article belongs to the Special Issue Feature Papers in Energy Materials)
Show Figures

Figure 1

11 pages, 2349 KiB  
Article
A Fluorescent Linear Conjugated Polymer Constructed from Pillararene and Anthracene
by Dinghui Wang, Jun Wang, Yan Wang and Yingwei Yang
Molecules 2022, 27(10), 3162; https://doi.org/10.3390/molecules27103162 - 15 May 2022
Cited by 7 | Viewed by 3414
Abstract
Over the past few years, conjugated polymers (CPs) have aroused much attention owing to their rigid conjugated structures, which can perform well in light harvesting and energy transfer and offer great potential in materials chemistry. In this article, we fabricate a new luminescent [...] Read more.
Over the past few years, conjugated polymers (CPs) have aroused much attention owing to their rigid conjugated structures, which can perform well in light harvesting and energy transfer and offer great potential in materials chemistry. In this article, we fabricate a new luminescent linear CP p(P[5](OTf)2-co-9,10-dea) via the Sonogashira coupling of 9,10-diethynylanthracene and trifluoromethanesulfonic anhydride (OTf) modified pillar[5]arene, generating enhanced yellow-green fluorescence emission at around 552 nm. The reaction condition was screened to get a deeper understanding of this polymerization approach, resulting in an excellent yield as high as 92% ultimately. Besides the optical properties, self-assembly behaviors of the CP in low/high concentrations were studied, where interesting adjustable morphologies from tube to sheet were observed. In addition, the fluorescence performance and structural architecture can be disturbed by the host–guest reorganization between the host CP and the guest adiponitrile, suggesting great potential of this CP material in the field of sensing and detection. Full article
Show Figures

Figure 1

14 pages, 2141 KiB  
Article
Improving Product Yield in the Direct Carboxylation of Glycerol with CO2 through the Tailored Selection of Dehydrating Agents
by Nurul Razali and James McGregor
Catalysts 2021, 11(1), 138; https://doi.org/10.3390/catal11010138 - 18 Jan 2021
Cited by 15 | Viewed by 4266
Abstract
Improved yields of, and selectivities to, value-added products synthesised from glycerol are shown to be achieved through the judicious selection of dehydrating agents and through the development of improved catalysts. The direct carboxylation of glycerol with CO2 over lanthanum-based catalysts can yield [...] Read more.
Improved yields of, and selectivities to, value-added products synthesised from glycerol are shown to be achieved through the judicious selection of dehydrating agents and through the development of improved catalysts. The direct carboxylation of glycerol with CO2 over lanthanum-based catalysts can yield glycerol carbonate in the presence of basic species, or acetins in the presence of acidic molecules. The formation of glycerol carbonate is thermodynamically limited; removal of produced water shifts the chemical equilibrium to the product side. Acetonitrile, benzonitrile and adiponitrile have been investigated as basic dehydrating agents to promote glycerol carbonate synthesis. In parallel, acetic anhydride has been studied as an acidic dehydrating agent to promote acetin formation. Alongside this, the influence of the catalyst synthesis method has been investigated allowing links between the physicochemical properties of the catalyst and catalytic performance to be determined. The use of acetonitrile and La catalysts allows the results for the novel dehydrating agents to be benchmarked against literature data. Notably, adiponitrile exhibits significantly enhanced performance over other dehydrating agents, e.g., achieving a 5-fold increase in glycerol carbonate yield with respect to acetonitrile. This is in part ascribed to the fact that each molecule of adiponitrile has two nitrile functionalities to promote the reactive removal of water. In addition, mechanistic insights show that adiponitrile results in reduced by-product formation. Considering by-product formation, 4-hydroxymethyl(oxazolidin)-2-one (4-HMO) has, for the first time, been observed in all reaction systems using cyanated species. Studies investigating the influence of the catalyst synthesis route show a complex relationship between surface basicity, surface area, crystallite phase and reactivity. These results suggest alternative strategies to maximise the yield of desirable products from glycerol through tailoring the reaction chemistry and by-product formation via an appropriate choice of dehydrating agents and co-reagents. Full article
(This article belongs to the Special Issue Catalytic Valorization of Glycerol: Strategies and Perspectives)
Show Figures

Graphical abstract

9 pages, 1280 KiB  
Article
Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts
by Younghyun Lee, Sung Woo Lee, Hyung Ju Kim, Yong Tae Kim, Kun-Yi Andrew Lin and Jechan Lee
Appl. Sci. 2020, 10(21), 7506; https://doi.org/10.3390/app10217506 - 26 Oct 2020
Cited by 13 | Viewed by 6023
Abstract
Hexamethylenediamine (HMDA), a chemical for producing nylon, was produced on Raney Ni and Raney Co catalysts via the hydrogenation of adiponitrile (ADN). HMDA was hydrogenated from ADN via 6-aminohexanenitrile (AHN). For the two catalysts, the effects of five different reaction parameters (reaction temperature, [...] Read more.
Hexamethylenediamine (HMDA), a chemical for producing nylon, was produced on Raney Ni and Raney Co catalysts via the hydrogenation of adiponitrile (ADN). HMDA was hydrogenated from ADN via 6-aminohexanenitrile (AHN). For the two catalysts, the effects of five different reaction parameters (reaction temperature, H2 pressure, catalyst loading, and ADN/HMDA ratio in the reactant) on the hydrogenation of ADN were investigated. Similar general trends demonstrating the dependence of ADN hydrogenation on the reaction conditions for both catalysts were observed: higher temperature (60–80 °C) and H2 pressure, as well as lower ADN/catalyst and ADN/HMDA ratios, led to higher HMDA yields. A further increase in temperature from 80 to 100 °C increased the HMDA yield from 90.5 to 100% for the Raney Ni catalyst, but did not affect the HMDA yield (85~87%) for the Raney Co catalyst. A 100% HMDA yield (the highest yield reported to date) was also achieved via ADN hydrogenation over the Raney Ni catalyst, with a high HMDA content in the reactant (e.g., ADN/HMDA volumetric ratio of 0.06). No sign of metal leaching into the product solution was found, meaning that the Raney Ni and Raney Co catalysts were stable during ADN hydrogenation. Full article
Show Figures

Figure 1

20 pages, 4675 KiB  
Article
Phenylacetonitrile (C6H5CH2CN) Ionic Liquid Blends as Alternative Electrolytes for Safe and High-Performance Supercapacitors
by Flavien Ivol, Marina Porcher, Arunabh Ghosh, Johan Jacquemin and Fouad Ghamouss
Molecules 2020, 25(11), 2697; https://doi.org/10.3390/molecules25112697 - 10 Jun 2020
Cited by 14 | Viewed by 5361
Abstract
The increasing need in the development of storage devices is calling for the formulation of alternative electrolytes, electrochemically stable and safe over a wide range of conditions. To achieve this goal, electrolyte chemistry must be explored to propose alternative solvents and salts to [...] Read more.
The increasing need in the development of storage devices is calling for the formulation of alternative electrolytes, electrochemically stable and safe over a wide range of conditions. To achieve this goal, electrolyte chemistry must be explored to propose alternative solvents and salts to the current acetonitrile (ACN) and tetraethylammonium tetrafluoroborate (Et4NBF4) benchmarks, respectively. Herein, phenylacetonitrile (Ph-ACN) has been proposed as a novel alternative solvent to ACN in supercapacitors. To establish the main advantages and drawbacks of such a substitution, Ph-ACN + Et4NBF4 blends were formulated and characterized prior to being compared with the benchmark electrolyte and another alternative electrolyte based on adiponitrile (ADN). While promising results were obtained, the low Et4NBF4 solubility in Ph-ACN seems to be the main limiting factor. To solve such an issue, an ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl] imide (EmimTFSI), was proposed to replace Et4NBF4. Unsurprisingly, the Ph-ACN + EmimTFSI blend was found to be fully miscible over the whole range of composition giving thus the flexibility to optimize the electrolyte formulation over a large range of IL concentrations up to 4.0 M. The electrolyte containing 2.7 M of EmimTFSI in Ph-ACN was identified as the optimized blend thanks to its interesting transport properties. Furthermore, this blend possesses also the prerequisites of a safe electrolyte, with an operating liquid range from at least −60 °C to +130 °C, and operating window of 3.0 V and more importantly, a flash point of 125 °C. Finally, excellent electrochemical performances were observed by using this electrolyte in a symmetric supercapacitor configuration, showing another advantage of mixing an ionic liquid with Ph-ACN. We also supported key structural descriptors by density functional theory (DFT) and COnductor-like Screening Model for Real Solvents (COSMO-RS) calculations, which can be associated to physical and electrochemical properties of the resultant electrolytes. Full article
(This article belongs to the Special Issue Ionic Liquids, from Their Synthesis to Their Applications)
Show Figures

Figure 1

16 pages, 3526 KiB  
Article
Numerical Simulation of a Two-Phase Flow for the Acrylonitrile Electrolytic Adiponitrile Process in a Vertical/Horizontal Electrolysis Cell
by Jiin-Yuh Jang and Yu-Feng Gan
Energies 2018, 11(10), 2731; https://doi.org/10.3390/en11102731 - 12 Oct 2018
Cited by 1 | Viewed by 2713
Abstract
This paper investigated the effect of oxygen holdup on the current density distribution over the electrode of a vertical/horizontal electrolysis cell with a two-dimensional Eulerian–Eulerian two-phase flow model in the acrylonitrile (AN) electrolytic adiponitrile (ADN) process. The physical models consisted of a vertical/horizontal [...] Read more.
This paper investigated the effect of oxygen holdup on the current density distribution over the electrode of a vertical/horizontal electrolysis cell with a two-dimensional Eulerian–Eulerian two-phase flow model in the acrylonitrile (AN) electrolytic adiponitrile (ADN) process. The physical models consisted of a vertical/horizontal electrolysis cell 10 mm wide and 600 mm long. The electrical potential difference between the anode and cathode was fixed at 5 V, which corresponded to a uniform current density j = 0.4 A/cm2 without any bubbles released from the electrodes. The effects of different inlet electrolyte velocities (vin = 0.4, 0.6, 1.0 and 1.5 m/s) on the void fraction and the current density distributions were discussed in detail. It is shown that, for a given applied voltage, as the electrolyte velocity is increased, the gas diffusion layer thickness decreased and this resulted in the decrease of the gas void fraction and increase of the corresponding current density; for a given velocity, the current density for a vertical cell was higher than that for a horizontal cell. Furthermore, assuming the release of uniform mass flux for the oxygen results in overestimation of the total gas accumulation mass flow rate by 2.8% and 5.8% and it will also result in underestimation of the current density by 0.3% and 2.4% for a vertical cell and a horizontal cell, respectively. The results of this study can provide useful information for the design of an ADN electrolysis cell. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

11 pages, 6241 KiB  
Article
Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine
by Chengqiang Wang, Zekun Jia, Bin Zhen and Minghan Han
Molecules 2018, 23(1), 92; https://doi.org/10.3390/molecules23010092 - 4 Jan 2018
Cited by 17 | Viewed by 7208
Abstract
Supported Ni catalysts prepared under different conditions, for liquid phase hydrogenation of adiponitrile (ADN) to 6-aminocapronitrile (ACN) and hexamethyenediamine (HMD), were investigated. The highly reactive imine intermediate can form condensation byproducts with primary amine products (ACN and HMD), which decreased the yield coefficient [...] Read more.
Supported Ni catalysts prepared under different conditions, for liquid phase hydrogenation of adiponitrile (ADN) to 6-aminocapronitrile (ACN) and hexamethyenediamine (HMD), were investigated. The highly reactive imine intermediate can form condensation byproducts with primary amine products (ACN and HMD), which decreased the yield coefficient of primary amines. The catalysts support, condition of catalyst preparation and dosage of additive were studied to improve the yield. A highly dispersed Ni/SiO2 catalyst prepared by the direct reduction of Ni(NO3)2/SiO2 suppressed the condensation reactions by promoting the hydrogenation of adsorbed imines, and it gave the improved hydrogenation activity of 0.63 mol·kgcat−1·min−1 and primary amine selectivity of 94% when NaOH was added into the reactor. Full article
(This article belongs to the Special Issue Base Metal Catalysis and Green Synthesis)
Show Figures

Figure 1

Back to TopTop