Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = adaptive state fidelity estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 816 KB  
Article
Impact of Weather Variability on the Operational Costs of a Maritime Ferry
by Beata Magryta-Mut and Mateusz Torbicki
Water 2025, 17(21), 3146; https://doi.org/10.3390/w17213146 (registering DOI) - 2 Nov 2025
Abstract
Maritime ferries increasingly operate under non-stationary hydro–meteorological conditions that complicate cost planning. This study investigates how short-term weather variability affects expenditures for a ferry on the Gdynia–Karlskrona route. We combine a state-based operational framework (18 discrete states) with a subsystem-level cost model covering [...] Read more.
Maritime ferries increasingly operate under non-stationary hydro–meteorological conditions that complicate cost planning. This study investigates how short-term weather variability affects expenditures for a ferry on the Gdynia–Karlskrona route. We combine a state-based operational framework (18 discrete states) with a subsystem-level cost model covering navigation, propulsion/steering, loading/unloading, stability control, and mooring/anchoring. Direct and indirect costs are linked to subsystem activity and state duration, while weather is incorporated through hazard categories that scale hourly costs. Expert-elicited rates and observed monthly state durations provide the basis for baseline estimates and hazard scenario simulations. Results reveal a disproportionate cost structure: two open-sea states constitute over 97% of the baseline monthly cost (19,490.19 PLN). Weather hazards further amplify costs, with moderate (1st-degree) and severe (2nd-degree) scenarios producing increases of ~8% and ~20%, respectively, compared to normal conditions. By embedding weather as an endogenous factor in a probabilistic cost model based on a semi-Markov process, the approach enhances predictive fidelity and supports decision-making for climate-resilient planning. These findings suggest that adaptive routing, speed management, and targeted maintenance of the propulsion and steering subsystems during open-sea navigation offer the highest potential for cost resilience. The study provides operators and policymakers with a transparent framework for climate-resilient planning and investment in semi-enclosed maritime corridors. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 10215 KB  
Article
Robust Denoising of Structure Noise Through Dual-Diffusion Brownian Bridge Modeling and Coupled Sampling
by Long Chen, Changan Yuan, Huafu Xu, Ye He and Jianhui Jiang
Electronics 2025, 14(21), 4243; https://doi.org/10.3390/electronics14214243 - 30 Oct 2025
Viewed by 173
Abstract
Recent denoising methods based on diffusion models typically formulate the task as a conditional generation process initialized from a standard Gaussian distribution. However, such stochastic initialization often leads to redundant sampling steps and unstable results due to the neglect of structured noise characteristics. [...] Read more.
Recent denoising methods based on diffusion models typically formulate the task as a conditional generation process initialized from a standard Gaussian distribution. However, such stochastic initialization often leads to redundant sampling steps and unstable results due to the neglect of structured noise characteristics. To address these limitations, we propose a novel framework that directly bridges the probabilistic distributions of noisy and clean images while jointly modeling structured noise. We introduce Dual-diffusion Brownian Bridge Coupled Sampling (DBBCS) the first framework to incorporate Brownian bridge diffusion into image denoising. DBBCS synchronously models the distributions of clean images and structural noise via two coupled diffusion processes. Unlike conventional diffusion models, our method starts sampling directly from noisy observations and jointly optimizes image reconstruction and noise estimation through a coupled posterior sampling scheme. This allows for dynamic refinement of intermediate states by adaptively updating the sampling gradients using residual feedback from both image and noise paths. Specifically, DBBCS employs two parallel Brownian bridge models to learn the distributions of clean images and noise. During inference, their respective residual processes regulate each other to progressively enhance both denoising and noise estimation. A consistency constraint is enforced among the estimated noise, the reconstructed image, and the original noisy input to ensure stable and physically coherent results. Extensive experiments on standard benchmarks demonstrate that DBBCS achieves superior performance in both visual fidelity and quantitative metrics, offering a robust and efficient solution to image denoising. Full article
(This article belongs to the Special Issue Recent Advances in Efficient Image and Video Processing)
Show Figures

Figure 1

22 pages, 15904 KB  
Article
Multi-Timescale Estimation of SOE and SOH for Lithium-Ion Batteries with a Fractional-Order Model and Multi-Innovation Filter Framework
by Jing Yu and Fang Yao
Batteries 2025, 11(10), 372; https://doi.org/10.3390/batteries11100372 - 10 Oct 2025
Viewed by 377
Abstract
Based on a fractional-order equivalent circuit model, this paper proposes a multi-timescale collaborative State of Energy (SOE) and State of Health (SOH) estimation method (FOASTFREKF-EKF) for lithium batteries to mitigate the influence of model inaccuracies and battery aging on SOE estimation. Initially, a [...] Read more.
Based on a fractional-order equivalent circuit model, this paper proposes a multi-timescale collaborative State of Energy (SOE) and State of Health (SOH) estimation method (FOASTFREKF-EKF) for lithium batteries to mitigate the influence of model inaccuracies and battery aging on SOE estimation. Initially, a fractional-order equivalent circuit model is built, and its parameters are identified offline using the Starfish Optimization Algorithm (SFOA) to establish a high-fidelity battery model. An H∞ filter is then integrated to improve the algorithm’s resilience to external disturbances. Furthermore, an adaptive noise covariance adjustment mechanism is employed to reduce the effect of operational noise, and a time-varying attenuation factor is introduced to improve the algorithm’s tracking and convergence capabilities during abrupt system-state changes. A joint estimator is subsequently constructed, which uses an Extended Kalman Filter (EKF) for the online determination of battery parameters and SOH assessment. This approach minimizes the effect of varying model parameters on SOE accuracy while reducing computational load through multi-timescale methods. Experimental validation under diverse operating conditions shows that the proposed algorithm achieves root mean square errors (RMSE) of less than 0.21% for SOE and 0.31% for SOH. These findings demonstrate that the method provides high accuracy and reliability under complex operating conditions. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

23 pages, 9388 KB  
Article
Optimized Line-of-Sight Active Disturbance Rejection Control for Depth Tracking of Hybrid Underwater Gliders in Disturbed Environments
by Yan Zhao, Hefeng Zhou, Pan Xu, Yongping Jin, Zhangfu Tian and Yun Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1835; https://doi.org/10.3390/jmse13101835 - 23 Sep 2025
Viewed by 328
Abstract
Hybrid underwater gliders (HUGs) combine buoyancy-driven gliding with propeller-assisted propulsion, offering extended endurance and enhanced mobility for complex underwater missions. However, precise depth control remains challenging due to system uncertainties, environmental disturbances, and inadequate adaptability of conventional control methods. This study proposes a [...] Read more.
Hybrid underwater gliders (HUGs) combine buoyancy-driven gliding with propeller-assisted propulsion, offering extended endurance and enhanced mobility for complex underwater missions. However, precise depth control remains challenging due to system uncertainties, environmental disturbances, and inadequate adaptability of conventional control methods. This study proposes a novel optimized line-of-sight active disturbance rejection control (OLOS-ADRC) strategy for HUG depth tracking in the vertical plane. First, an Optimized Line-of-Sight (OLOS) guidance dynamically adjusts the look-ahead distance based on real-time cross-track error and velocity, mitigating error accumulation during path following. Second, a Tangent Sigmoid-based Tracking Differentiator (TSTD) enhances the disturbance estimation capability of the Extended State Observer (ESO) within the Active Disturbance Rejection Control (ADRC) framework, improving robustness against unmodeled dynamics and ocean currents. As a critical step before costly sea trials, this study establishes a high-fidelity simulation environment to validate the proposed method. The comparative experiments under gliding and hybrid propulsion modes demonstrated that OLOS-ADRC has significant advantages: the root mean square error (RMSE) for depth tracking was reduced by 83% compared to traditional ADRC, the root mean square error for pitch angle was decreased by 32%, and the stabilization time was shortened by 14%. This method effectively handles ocean current interference through real-time disturbance compensation, providing a reliable solution for high-precision HUG motion control. The simulation results provide a convincing foundation for future field validation in oceanic environments. Despite these improvements, the study is limited to vertical plane control and simulations; future work will involve full ocean trials and 3D path tracking. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 2814 KB  
Article
LF-Net: A Lightweight Architecture for State-of-Charge Estimation of Lithium-Ion Batteries by Decomposing Global Trend and Local Fluctuations
by Ruidi Zhou, Xilin Dai, Jinhao Zhang, Keyi He, Fanfan Lin and Hao Ma
Electronics 2025, 14(18), 3643; https://doi.org/10.3390/electronics14183643 - 15 Sep 2025
Viewed by 451
Abstract
Accurate estimation of the State of Charge (SOC) of lithium-ion batteries under complex operating conditions remains challenging, as the SOC signal combines a global linear (quasi-linear) trend with localized dynamic fluctuations driven by polarization, ion diffusion, temperature gradients, and load transients. In practice, [...] Read more.
Accurate estimation of the State of Charge (SOC) of lithium-ion batteries under complex operating conditions remains challenging, as the SOC signal combines a global linear (quasi-linear) trend with localized dynamic fluctuations driven by polarization, ion diffusion, temperature gradients, and load transients. In practice, open-circuit-voltage (OCV) approaches are affected by hysteresis and parameter drift, while high-fidelity electrochemical models require extensive parameterization and significant computational resources that hinder their real-time deployment in battery management systems (BMS). Purely data-driven methods capture temporal patterns but may under-represent abrupt local fluctuations and blur the distinction between trend and fluctuation, leading to biased SOC tracking when operating conditions change. To address these issues, LF-Net is proposed. The architecture decomposes battery time series into long-term trend and local fluctuation components. A linear branch models the quasi-linear SOC evolution. Multi-scale convolutional and differential branches enhance sensitivity to transient dynamics. An adaptive Fusion Module aggregates the representations, improving interpretability and stability, and keeps the parameter budget small for embedded hardware. Our experimental results demonstrate that the proposed model achieves a mean absolute error (MAE) of 0.0085 and a root-mean-square error (RMSE) of 0.0099 at 40 °C, surpassing mainstream models and confirming the method’s efficacy. Full article
Show Figures

Figure 1

23 pages, 7046 KB  
Article
Atmospheric Scattering Prior Embedded Diffusion Model for Remote Sensing Image Dehazing
by Shanqin Wang and Miao Zhang
Atmosphere 2025, 16(9), 1065; https://doi.org/10.3390/atmos16091065 - 10 Sep 2025
Viewed by 799
Abstract
Remote sensing image dehazing presents substantial challenges in balancing physical fidelity with generative flexibility, particularly under complex atmospheric conditions and sensor-specific degradation patterns. Traditional physics-based methods often struggle with nonlinear haze distributions, while purely data-driven approaches tend to lack interpretability and physical consistency. [...] Read more.
Remote sensing image dehazing presents substantial challenges in balancing physical fidelity with generative flexibility, particularly under complex atmospheric conditions and sensor-specific degradation patterns. Traditional physics-based methods often struggle with nonlinear haze distributions, while purely data-driven approaches tend to lack interpretability and physical consistency. To bridge this gap, we propose the Atmospheric Scattering Prior embedded Diffusion Model (ASPDiff), a novel framework that seamlessly integrates atmospheric physics into the diffusion-based generative restoration process. ASPDiff establishes a closed-loop feedback mechanism by embedding the atmospheric scattering model as a physics-driven regularization throughout both the forward degradation simulation and the reverse denoising trajectory. The framework operates through the following three synergistic components: (1) an Atmospheric Prior Estimation Module that uses the Dark Channel Prior to generate initial estimates of the transmission map and global atmospheric light, which are then refined through learnable adjustment networks; (2) a Diffusion Process with Atmospheric Prior Embedding, where the refined priors serve as conditional guidance during the reverse diffusion sampling, ensuring physical plausibility; and (3) a Haze-Aware Refinement Module that adaptively enhances structural details and compensates for residual haze via frequency-aware decomposition and spatial attention. Extensive experiments on both synthetic and real-world remote sensing datasets demonstrate that ASPDiff significantly outperforms existing methods, achieving state-of-the-art performance while maintaining strong physical interpretability. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 3606 KB  
Article
Kalman–FIR Fusion Filtering for High-Dynamic Airborne Gravimetry: Implementation and Noise Suppression on the GIPS-1A System
by Guanxin Wang, Shengqing Xiong, Fang Yan, Feng Luo, Linfei Wang and Xihua Zhou
Appl. Sci. 2025, 15(17), 9363; https://doi.org/10.3390/app15179363 - 26 Aug 2025
Cited by 1 | Viewed by 538
Abstract
High-dynamic airborne gravimetry faces critical challenges from platform-induced noise contamination. Conventional filtering methods exhibit inherent limitations in simultaneously achieving dynamic tracking capability and spectral fidelity. To overcome these constraints, this study proposes a Kalman–FIR fusion filtering (K-F) method, which is validated through engineering [...] Read more.
High-dynamic airborne gravimetry faces critical challenges from platform-induced noise contamination. Conventional filtering methods exhibit inherent limitations in simultaneously achieving dynamic tracking capability and spectral fidelity. To overcome these constraints, this study proposes a Kalman–FIR fusion filtering (K-F) method, which is validated through engineering implementation on the GIPS-1A airborne gravimeter platform. The proposed framework employs a dual-stage strategy: (1) An adaptive state-space framework employing calibration coefficients (Sx, Sy, Sz) continuously estimates triaxial acceleration errors to compensate for gravity anomaly signals. This approach resolves aliasing artifacts induced by non-stationary noise while preserving low-frequency gravity components that are traditionally attenuated by conventional FIR filters. (2) A window-optimized FIR post-filter explicitly regulates cutoff frequencies to ensure spectral compatibility with downstream processing workflows, including terrain correction. Flight experiments demonstrate that the K-F method achieves a repeat-line internal consistency of 0.558 mGal at 0.01 Hz—a 65.3% accuracy improvement over standalone FIR filtering (1.606 mGal at 0.01 Hz). Concurrently, it enhances spatial resolution to 2.5 km (half-wavelength), enabling the recovery of data segments corrupted by airflow disturbances that were previously unusable. Implemented on the GIPS-1A system, K-F enables precision mineral exploration and establishes a noise-suppressed paradigm for extreme-dynamic gravimetry. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

20 pages, 7661 KB  
Article
Incorporating a Deep Neural Network into Moving Horizon Estimation for Embedded Thermal Torque Derating of an Electric Machine
by Alexander Winkler, Pranav Shah, Katrin Baumgärtner, Vasu Sharma, David Gordon and Jakob Andert
Energies 2025, 18(14), 3813; https://doi.org/10.3390/en18143813 - 17 Jul 2025
Viewed by 694
Abstract
This study presents a novel state estimation approach integrating Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE). This is a shift from using traditional physics-based models within MHE towards data-driven techniques. Specifically, a Long Short-Term Memory (LSTM)-based DNN is trained using synthetic [...] Read more.
This study presents a novel state estimation approach integrating Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE). This is a shift from using traditional physics-based models within MHE towards data-driven techniques. Specifically, a Long Short-Term Memory (LSTM)-based DNN is trained using synthetic data derived from a high-fidelity thermal model of a Permanent Magnet Synchronous Machine (PMSM), applied within a thermal derating torque control strategy for battery electric vehicles. The trained DNN is directly embedded within an MHE formulation, forming a discrete-time nonlinear optimal control problem (OCP) solved via the acados optimization framework. Model-in-the-Loop simulations demonstrate accurate temperature estimation even under noisy sensor conditions and simulated sensor failures. Real-time implementation on embedded hardware confirms practical feasibility, achieving computational performance exceeding real-time requirements threefold. By integrating the learned LSTM-based dynamics directly into MHE, this work achieves state estimation accuracy, robustness, and adaptability while reducing modeling efforts and complexity. Overall, the results highlight the effectiveness of combining model-based and data-driven methods in safety-critical automotive control systems. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Graphical abstract

18 pages, 2791 KB  
Article
Deterministic Data Assimilation in Thermal-Hydraulic Analysis: Application to Natural Circulation Loops
by Lanxin Gong, Changhong Peng and Qingyu Huang
J. Nucl. Eng. 2025, 6(3), 23; https://doi.org/10.3390/jne6030023 - 3 Jul 2025
Viewed by 832
Abstract
Recent advances in high-fidelity modeling, numerical computing, and data science have spurred interest in model-data integration for nuclear reactor applications. While machine learning often prioritizes data-driven predictions, this study focuses on data assimilation (DA) to synergize physical models with measured data, aiming to [...] Read more.
Recent advances in high-fidelity modeling, numerical computing, and data science have spurred interest in model-data integration for nuclear reactor applications. While machine learning often prioritizes data-driven predictions, this study focuses on data assimilation (DA) to synergize physical models with measured data, aiming to enhance predictive accuracy and reduce uncertainties. We implemented deterministic DA methods—Kalman filter (KF) and three-dimensional variational (3D-VAR)—in a one-dimensional single-phase natural circulation loop and extended 3D-VAR to RELAP5, a system code for two-phase loop analysis. Unlike surrogate-based or model-reduction strategies, our approach leverages full-model propagation without relying on computationally intensive sampling. The results demonstrate that KF and 3D-VAR exhibit robustness against varied noise types, intensities, and distributions, achieving significant uncertainty reduction in state variables and parameter estimation. The framework’s adaptability is further validated under oceanic conditions, suggesting its potential to augment baseline models beyond conventional extrapolation boundaries. These findings highlight DA’s capacity to improve model calibration, safety margin quantification, and reactor field reconstruction. By integrating high-fidelity simulations with real-world data corrections, the study establishes a scalable pathway to enhance the reliability of nuclear system predictions, emphasizing DA’s role in bridging theoretical models and operational demands without compromising computational efficiency. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

21 pages, 4193 KB  
Article
Comparative Evaluation of Fractional-Order Models for Lithium-Ion Batteries Response to Novel Drive Cycle Dataset
by Xinyuan Wei, Longxing Wu, Chunhui Liu, Zhiyuan Si, Xing Shu and Heng Li
Fractal Fract. 2025, 9(7), 429; https://doi.org/10.3390/fractalfract9070429 - 30 Jun 2025
Viewed by 901
Abstract
The high-fidelity lithium-ion battery (LIB) models are crucial for realizing an accurate state estimation in battery management systems (BMSs). Recently, the fractional-order equivalent circuit models (FOMs), as a frequency-domain modeling approach, offer distinct advantages for constructing high-precision battery models in field of electric [...] Read more.
The high-fidelity lithium-ion battery (LIB) models are crucial for realizing an accurate state estimation in battery management systems (BMSs). Recently, the fractional-order equivalent circuit models (FOMs), as a frequency-domain modeling approach, offer distinct advantages for constructing high-precision battery models in field of electric vehicles. However, the quantitative evaluations and adaptability of these models under different driving cycle datasets are still lacking and challenging. For this reason, comparative evaluations of different FOMs using a novel drive cycle dataset of a battery was carried out in this paper. First, three typical FOMs were initially established and the particle swarm optimization algorithm was then employed to identify model parameters. Complementarily, the efficiency and accuracy of the offline identification for three typical FOMs are also discussed. Subsequently, the terminal voltages of these different FOMs were investigated and evaluated under dynamic operating conditions. Results demonstrate that the FOM-W model exhibits the highest superiority in simulation accuracy, achieving a mean absolute error (MAE) of 9.2 mV and root mean square error (RMSE) of 19.1 mV under Highway Fuel Economy Test conditions. Finally, the accuracy verification of the FOM-W model under two other different dynamic operating conditions has also been thoroughly investigated, and it could still maintain a RMSE and MAE below 21 mV, which indicates its strong adaptability and generalization compared with other FOMs. Conclusions drawn from this paper can further guide the selection of battery models to achieve reliable state estimations of BMS. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

19 pages, 5986 KB  
Article
Gaussian-UDSR: Real-Time Unbounded Dynamic Scene Reconstruction with 3D Gaussian Splatting
by Yang Sun, Yue Zhou, Bin Tian, Haiyang Wang, Yongchao Zhao and Songdi Wu
Appl. Sci. 2025, 15(11), 6262; https://doi.org/10.3390/app15116262 - 2 Jun 2025
Viewed by 3507
Abstract
Unbounded dynamic scene reconstruction is crucial for applications such as autonomous driving, robotics, and virtual reality. However, existing methods struggle to reconstruct dynamic scenes in unbounded outdoor environments due to challenges such as lighting variation, object motion, and sensor limitations, leading to inaccurate [...] Read more.
Unbounded dynamic scene reconstruction is crucial for applications such as autonomous driving, robotics, and virtual reality. However, existing methods struggle to reconstruct dynamic scenes in unbounded outdoor environments due to challenges such as lighting variation, object motion, and sensor limitations, leading to inaccurate geometry and low rendering fidelity. In this paper, we proposed Gaussian-UDSR, a novel 3D Gaussian-based representation that efficiently reconstructs and renders high-quality, unbounded dynamic scenes in real time. Our approach fused LiDAR point clouds and Structure-from-Motion (SfM) point clouds obtained from an RGB camera, significantly improving depth estimation and geometric accuracy. To address dynamic appearance variations, we introduced a Gaussian color feature prediction network, which adaptively captures global and local feature information, enabling robust rendering under changing lighting conditions. Additionally, a pose-tracking mechanism ensured precise motion estimation for dynamic objects, enhancing realism and consistency. We evaluated Gaussian-UDSR on the Waymo and KITTI datasets, demonstrating state-of-the-art rendering quality with an 8.8% improvement in PSNR, a 75% reduction in LPIPS, and a fourfold speed improvement over existing methods. Our approach enables efficient, high-fidelity 3D reconstruction and fast real-time rendering of large-scale dynamic environments, while significantly reducing model storage overhead. Full article
Show Figures

Figure 1

36 pages, 4757 KB  
Article
NLE-ANSNet: A Multilevel Noise Estimation and Adaptive Scaling Framework for Hybrid Noise Suppression in Contrast-Enhanced Magnetic Resonance Imaging for Hepatocellular Carcinoma
by Jasem Almotiri
Mathematics 2025, 13(11), 1768; https://doi.org/10.3390/math13111768 - 26 May 2025
Viewed by 771
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, so its detection and monitoring are critical. However, contrast-enhanced magnetic resonance imaging (CE-MRI) is particularly vulnerable to complex, unstructured noise, which compromises image quality and diagnostic accuracy. This study proposes the use [...] Read more.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, so its detection and monitoring are critical. However, contrast-enhanced magnetic resonance imaging (CE-MRI) is particularly vulnerable to complex, unstructured noise, which compromises image quality and diagnostic accuracy. This study proposes the use of NLE-ANSNet, a deep learning-based denoizing framework that integrates multilevel noise level estimators (NLEs) and adaptive noise scaling (ANS) within residual blocks. The model performs progressive, stagewise noise suppression at multiple feature depths, dynamically adjusting normalization based on localized noise estimates. This enables context-aware denoizing, preserving fine anatomical details. To simulate clinically realistic conditions, we developed a hybrid noise simulation framework that combines Gaussian, Poisson, and Rician noise at the pixel level. This framework aims to approximate a balanced noise distribution for evaluation purposes, with both mean and median noise levels reported to enhance evaluation robustness and prevent bias from extreme cases. NLE-ANSNet achieves a PSNR of 34.01 dB and an SSIM of 0.9393, surpassing those of state-of-the-art models. The method aims to support diagnostic reliability by preserving image structure and intensity fidelity in CE-MRI interpretation. In addition to quantitative analysis, a qualitative assessment was conducted to visually compare denoizing outputs across models, further demonstrating NLE-ANSNet’s superior ability to suppress noise while preserving diagnostically critical information. Unlike previous approaches, this study introduces a denoizing framework that combines multilevel noise estimation and adaptive noise scaling specifically tailored for CE-MRI in HCC under hybrid noise conditions—a clinically relevant and underexplored area. Overall, this study supports improved clinical decision making in HCC management. Full article
Show Figures

Figure 1

23 pages, 7442 KB  
Article
Improved Online Kalman Smoothing Method for Ship Maneuvering Motion Data Using Expectation-Maximization Algorithm
by Wancheng Yue and Junsheng Ren
J. Mar. Sci. Eng. 2025, 13(6), 1018; https://doi.org/10.3390/jmse13061018 - 23 May 2025
Viewed by 564
Abstract
Despite the pivotal role of filtering and smoothing techniques in the preprocessing of ship maneuvering data for robust identification, persistent challenges in reconciling noise suppression with dynamic fidelity preservation have limited algorithmic advancements in recent decades. We propose an online smoothing method enhanced [...] Read more.
Despite the pivotal role of filtering and smoothing techniques in the preprocessing of ship maneuvering data for robust identification, persistent challenges in reconciling noise suppression with dynamic fidelity preservation have limited algorithmic advancements in recent decades. We propose an online smoothing method enhanced by the Expectation-Maximization (EM) algorithm framework that effectively extracts high-fidelity dynamic features from raw maneuvering data, thereby enhancing the fidelity of subsequent ship identification systems. Our method effectively addresses the challenges posed by heavy-tailed Student-t distributed noise and parameter uncertainty inherent in ship motion data, demonstrating robust parameter learning capabilities, even when initial ship motion system parameters deviate from real conditions. Through iterative data assimilation, the algorithm adaptively calibrates noise distribution parameters while preserving motion smoothness, achieving superior accuracy in velocity and heading estimation compared to conventional Rauch–Tung–Striebel (RTS) smoothers. By integrating parameter adaptation within the smoothing framework, the proposed method reduces motion prediction errors by 23.6% in irregular sea states, as validated using real ship motion data from autonomous navigation tests. Full article
(This article belongs to the Special Issue The Control and Navigation of Autonomous Surface Vehicles)
Show Figures

Figure 1

24 pages, 1781 KB  
Article
Learning-Based MPC Leveraging SINDy for Vehicle Dynamics Estimation
by Francesco Paparazzo, Andrea Castoldi, Mohammed Irshadh Ismaaeel Sathyamangalam Imran, Stefano Arrigoni and Francesco Braghin
Electronics 2025, 14(10), 1935; https://doi.org/10.3390/electronics14101935 - 9 May 2025
Cited by 2 | Viewed by 2662
Abstract
Self-driving technology aims to minimize human error and improve safety, efficiency, and mobility through advanced autonomous driving algorithms. Among these, Model Predictive Control (MPC) is highly valued for its optimization capabilities and ability to manage constraints. However, its effectiveness depends on an accurate [...] Read more.
Self-driving technology aims to minimize human error and improve safety, efficiency, and mobility through advanced autonomous driving algorithms. Among these, Model Predictive Control (MPC) is highly valued for its optimization capabilities and ability to manage constraints. However, its effectiveness depends on an accurate system model, as modeling errors and disturbances can degrade performance, making uncertainty management crucial. Learning-based MPC addresses this challenge by adapting the predictive model to changing and unmodeled conditions. However, existing approaches often involve trade-offs: robust methods tend to be overly conservative, stochastic methods struggle with real-time feasibility, and deep learning lacks interpretability. Sparse regression techniques provide an alternative by identifying compact models that retain essential dynamics while eliminating unnecessary complexity. In this context, the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm is particularly appealing, as it derives governing equations directly from data, balancing accuracy and computational efficiency. This work investigates the use of SINDy for learning and adapting vehicle dynamics models within an MPC framework. The methodology consists of three key phases. First, in offline identification, SINDy estimates the parameters of a three-degree-of-freedom single-track model using simulation data, capturing tire nonlinearities to create a fully tunable vehicle model. This is then validated in a high-fidelity CarMaker simulation to assess its accuracy in complex scenarios. Finally, in the online phase, MPC starts with an incorrect predictive model, which SINDy continuously updates in real time, improving performance by reducing lap time and ensuring a smoother trajectory. Additionally, a constrained version of SINDy is implemented to avoid obtaining physically meaningless parameters while aiming for an accurate approximation of the effects of unmodeled states. Simulation results demonstrate that the proposed framework enables an adaptive and efficient representation of vehicle dynamics, with potential applications to other control strategies and dynamical systems. Full article
(This article belongs to the Special Issue Feature Papers in Electrical and Autonomous Vehicles)
Show Figures

Figure 1

30 pages, 12839 KB  
Article
An Integrated Framework for Real-Time Sea-State Estimation of Stationary Marine Units Using Wave Buoy Analogy
by Hamed Majidiyan, Hossein Enshaei, Damon Howe and Yiting Wang
J. Mar. Sci. Eng. 2024, 12(12), 2312; https://doi.org/10.3390/jmse12122312 - 16 Dec 2024
Cited by 7 | Viewed by 1357
Abstract
Understanding the impact of environmental factors, particularly seaway, on marine units is critical for developing efficient control and decision support systems. To this end, the concept of wave buoy analogy (WBA), which utilizes ships as sailing buoys, has captured practitioners’ attention due to [...] Read more.
Understanding the impact of environmental factors, particularly seaway, on marine units is critical for developing efficient control and decision support systems. To this end, the concept of wave buoy analogy (WBA), which utilizes ships as sailing buoys, has captured practitioners’ attention due to its cost-effectiveness and extensive coverage. Despite extensive research, real-time sea-state estimation (SSE) has remained challenging due to the large observation window needed for statistical inferences. The current study builds on previous work, aiming to propose an AI framework to reduce the estimation time lag between exciting waves and respective estimation by transforming temporal/spectral features into a manipulated scalogram. For that, an adaptive ship response predictor and deep learning model were incorporated to classify seaway while minimizing network complexity through feature engineering. The system’s performance was evaluated using data obtained from an experimental test on a semi-submersible platform, and the results demonstrate the promising functionality of the approach for a fully automated SSE system. For further comparison of features of low- and high-fidelity modeling, the deficits with the feature transformation of the existing SSE models are discussed. This study provides a foundation for improving online SSE and promoting the seaway acquisition for stationary marine units. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop