Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = active road object

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 936 KiB  
Article
Improving the Freight Transportation System in the Context of the Country’s Economic Development
by Veslav Kuranovič, Leonas Ustinovichius, Maciej Nowak, Darius Bazaras and Edgar Sokolovskij
Sustainability 2025, 17(14), 6327; https://doi.org/10.3390/su17146327 - 10 Jul 2025
Viewed by 259
Abstract
Due to the recent significant increase in the scale of both domestic and international cargo transportation, the transport sector is becoming an important factor in the country’s economic development. This implies the need to improve all links in the cargo transportation chain. A [...] Read more.
Due to the recent significant increase in the scale of both domestic and international cargo transportation, the transport sector is becoming an important factor in the country’s economic development. This implies the need to improve all links in the cargo transportation chain. A key role in it is played by logistics centers, which in their activities must meet both state (CO2 emissions, reduction in road load, increase in transportation safety, etc.) and commercial (cargo transportation in the shortest time and at the lowest cost) requirements. The objective of the paper is freight transportation from China to European countries, reflecting issues of CO2 emissions, reduction in road load, and increase in transportation safety. Transport operations from the manufacturer to the logistics center are especially important in this chain, since the efficiency of transportation largely depends on the decisions made by its employees. They select the appropriate types of transport (air, sea, rail, and road transport) and routes for a specific situation. In methodology, the analyzed problem can be presented as a dynamic multi-criteria decision model. It is assumed that the decision-maker—the manager responsible for planning transportation operations—is interested in achieving three basic goals: financial goal minimizing total delivery costs from factories to the logistics center, environmental goal minimizing the negative impact of supply chain operations on the environment, and high level of customer service goal minimizing delivery times from factories to the logistics center. The proposed methodology allows one to reduce the total carbon dioxide emission by 1.1 percent and the average duration of cargo transportation by 1.47 percent. On the other hand, the total cost of their delivery increases by 1.25 percent. By combining these, it is possible to create optimal transportation options, effectively use vehicles, reduce air pollution, and increase the quality of customer service. All this would significantly contribute to the country’s socio-economic development. It is proposed to solve this complex problem based on a dynamic multi-criteria model. In this paper, the problem of constructing a schedule of transport operations from factories to a logistics center is considered. The analyzed problem can be presented as a dynamic multi-criteria decision model. Linear programming and the AHP method were used to solve it. Full article
Show Figures

Figure 1

32 pages, 1758 KiB  
Article
Time-Varying Dynamics and Socioeconomic Determinants of Energy Consumption and Truck Emissions in Cold Regions
by Ge Zhou, Wenhui Zhang, Xiaotian Qiao, Wenjie Lv and Ziwen Song
Energies 2025, 18(13), 3527; https://doi.org/10.3390/en18133527 - 3 Jul 2025
Viewed by 263
Abstract
Facing the increasingly severe challenges of global climate change, China has established clear “dual carbon” goals, with the core objective of achieving carbon peak by 2030 or earlier. However, carbon emissions from the road freight industry have remained higher for many years; understanding [...] Read more.
Facing the increasingly severe challenges of global climate change, China has established clear “dual carbon” goals, with the core objective of achieving carbon peak by 2030 or earlier. However, carbon emissions from the road freight industry have remained higher for many years; understanding and estimating the characteristics of truck carbon emissions are critical for developing a low-carbon transportation system. This study takes Heilongjiang Province, a typically cold region, as a case study. By employing the growth curve method, we predicted the time for achieving carbon peak and constructed an improved STIRPAT model to identify key drivers and pathways for emission reduction in the road freight system. The research results show that only by committing to using the economy to reduce carbon emissions and improve energy intensity can the overall carbon emissions of Heilongjiang Province’s cargo transportation system achieve the “dual carbon” goals as soon as possible. If we develop according to the optimistic scenario proposed in this article, by 2030, the total quantity of trucks will reach about 933,720, and the carbon emissions per vehicle will reach about 178.14 t. If we actively increase the proportion of new energy trucks in the overall quantity of trucks, the peak time is expected to be achieved around 2030. The improvement of technological efficiency (e.g., lowering energy intensity) and the advancement of economic development have been identified as effective pathways for carbon emission reduction. Empirical studies indicate that these measures can achieve emission reduction impacts that are approximately 60 times and 10 times greater, respectively, in terms of efficiency, compared to baseline scenarios. Furthermore, energy intensity improvements and structural shifts toward low-carbon vehicles are critical to expediting peak attainment. This study provides a methodological framework for cold-region emission projections and offers actionable insights for policymakers to design tailored emission reduction pathways in the road freight transportation industry. Full article
Show Figures

Figure 1

22 pages, 5766 KiB  
Article
A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness
by Zhijun Fu, Mengyang Jia, Zhigang Zhang, Dengfeng Zhao, Jinquan Ding and Subhash Rakheja
Machines 2025, 13(7), 562; https://doi.org/10.3390/machines13070562 - 27 Jun 2025
Viewed by 209
Abstract
This study proposes a novel control framework for semi-active seat suspensions, specifically targeting motion sickness mitigation through precision suppression of vertical vibrations within the 0.1–0.5 Hz frequency range. Firstly, a fractional-order band-stop filter in conjunction with a linear quadratic regulator (LQR) controller under [...] Read more.
This study proposes a novel control framework for semi-active seat suspensions, specifically targeting motion sickness mitigation through precision suppression of vertical vibrations within the 0.1–0.5 Hz frequency range. Firstly, a fractional-order band-stop filter in conjunction with a linear quadratic regulator (LQR) controller under frequency-domain sensitivity constraints (0.1–0.5 Hz) is proposed to achieve frequency-selective vibration attenuation. Secondly, the multi-objective butterfly optimization algorithm (MOBOA) is adopted to optimize the LQR controller’s weighting matrices (Q, R) by balancing conflicting requirements in terms of human body displacement limits, acceleration thresholds, and suspension travel. Finally, experimental validation under concrete pavement excitation and random road profiles demonstrates significant advantages over conventional LQR, i.e., a 41.04% reduction in vertical vibration amplitude and a 55.95% suppression of acceleration peaks within the target frequency band. The combined enhancements offer dual benefits of enhancing ride comfort and motion sickness mitigation in real-world driving scenarios. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

23 pages, 77314 KiB  
Article
A Multi-Mode Active Control Method for the Hydropneumatic Suspension of Auxiliary Transport Vehicles in Underground Mines
by Jianjian Yang, Kangshuai Chen, Zhen Ding, Cong Zhao, Teng Zhang and Zhixiang Jiao
Appl. Sci. 2025, 15(12), 6871; https://doi.org/10.3390/app15126871 - 18 Jun 2025
Viewed by 240
Abstract
Auxiliary transport vehicles are essential components of the underground mine auxiliary transportation system, primarily used for tasks such as personnel and material transportation. However, the underground environment is complex, and unstructured roads exhibit significant randomness. Traditional passive hydropneumatic suspension systems struggle to strike [...] Read more.
Auxiliary transport vehicles are essential components of the underground mine auxiliary transportation system, primarily used for tasks such as personnel and material transportation. However, the underground environment is complex, and unstructured roads exhibit significant randomness. Traditional passive hydropneumatic suspension systems struggle to strike a balance between ride comfort and stability, resulting in insufficient adaptability of auxiliary transport vehicles in such challenging underground conditions. To address this issue, this paper proposes a multi-mode hydropneumatic suspension control strategy based on the identification of road surface grades in underground mines. The strategy dynamically adjusts the controller’s parameters in real time according to the identified road surface grades, thereby enhancing vehicle adaptability in complex environments. First, the overall framework of the active suspension control system is constructed, and models of the hydropneumatic spring, vehicle dynamics, and road surface are developed. Then, a road surface grade identification method based on Long Short-Term Memory networks is proposed. Finally, a fuzzy-logic-based sliding mode controller is designed to dynamically map the road surface grade information to the controller’s parameters. Three control objectives are set for different road grades, and the multi-objective optimization of the sliding mode’s surface coefficients and fuzzy-logic-based rule parameters is performed using the Hiking Optimization Algorithm. This approach enables the adaptive adjustment of the suspension system under various road conditions. The simulations indicate that when contrasted with conventional inactive hydropneumatic suspensions, the proposed method reduces the sprung mass’s acceleration by 21.2%, 18.86%, and 17.44% on B-, D-, and F-grade roads, respectively, at a speed of 10 km/h. This significant reduction in the vibrational response validates the potential application of the proposed method in underground mine environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

32 pages, 5267 KiB  
Article
Shifting Landscapes, Escalating Risks: How Land Use Conversion Shapes Long-Term Road Crash Outcomes in Melbourne
by Ali Soltani, Mohsen RoohaniQadikolaei and Amir Sobhani
Future Transp. 2025, 5(2), 75; https://doi.org/10.3390/futuretransp5020075 - 17 Jun 2025
Viewed by 1532
Abstract
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a [...] Read more.
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a decade influence subsequent road crash frequency in Metropolitan Melbourne. Our objective was to understand which conversion pathways pose the greatest risks or offer safety benefits, informing urban planning and policy. Utilizing extensive observational data covering numerous land use conversions, we employed Negative Binomial models (selected as the best fit over Poisson and quasi-Poisson alternatives) to analyze the association between various transition types and crash occurrences in surrounding areas. The analysis revealed distinct and statistically significant safety outcomes. Major findings indicate that transitions introducing intensified activity and vulnerable road users, such as converting agricultural land or parks to educational facilities (e.g., Agri → Edu, coefficient ≈ +0.10; Park → Edu, ≈+0.12), or intensifying land use in previously less active zones (e.g., Park → Com, ≈+0.07; Trans → Park, ≈+0.10), significantly elevate long-term crash risk, particularly when infrastructure is inadequate. Conversely, conversions creating low-traffic, nature-focused environments (e.g., Water → Park, ≈–0.16) or channeling activity onto well-suited infrastructure (e.g., Trans → Com, ≈–0.12) demonstrated substantial reductions in crash frequency. The critical role of context-specific infrastructure adaptation, highlighted by increased risks in some park conversions (e.g., Com → Park, ≈+0.06), emerged as a key mediator of safety outcomes. These findings underscore the necessity of integrating dynamic, long-term road safety considerations into land use planning, mandating appropriate infrastructure redesign during conversions, and prioritizing interventions for identified high-risk transition scenarios to foster safer and more sustainable urban development. Full article
Show Figures

Figure 1

21 pages, 2646 KiB  
Article
Evaluation of the Narrative Value and Experiential Quality of Urban Trails: A Case Study of the Southwest Regional Trail in Chongqing, China
by Zhongde Wang, Yuhan Liu, Ling Yang and Fanwei Meng
Sustainability 2025, 17(12), 5544; https://doi.org/10.3390/su17125544 - 16 Jun 2025
Viewed by 646
Abstract
Urban trails, as vital urban spaces that integrate historical context with contemporary life, play a central role in the rise of deep tourism and the “City Walk” phenomenon. Their spatial legibility positions them as distinctive narrative media, serving as a key channel for [...] Read more.
Urban trails, as vital urban spaces that integrate historical context with contemporary life, play a central role in the rise of deep tourism and the “City Walk” phenomenon. Their spatial legibility positions them as distinctive narrative media, serving as a key channel for promoting urban sustainable development and enhancing citizens’ sense of well-being. However, existing research has yet to establish a comprehensive and systematic framework for evaluating the “spatial narrative” of urban trail systems. This study proposes a dual-perspective quantitative framework for evaluating a spatial narrative, combining objective spatial dimensions with human experiential data to identify strengths and potentials for improvement. The Southwest Regional Trail in Chongqing (comprising the Zhongshan Fourth Road Section, People’s Assembly Hall Section, and Datianwan Section) was used as a case study. First, multi-source spatial data were analyzed via space syntax and ArcGIS to evaluate narrative value from an objective spatial perspective. Next, in-depth questionnaire interviews were conducted to collect subjective data, which were analyzed in SPSS to produce a structured analysis of participant feedback. The findings indicate that (1) Among the three sections of the Southwest Regional Trail, the narrative potential zones rank highest in the Zhongshan Fourth Road Section, followed by the People’s Assembly Hall Section and the Datianwan Section. (2) Urban trails characterized by rich narrative themes and cultural activities are more attractive to visitors. (3) The qualities of narrative symbols, routes, and educational elements are the key factors that specifically influence visitors’ satisfaction with the narrative experience on urban trails. Based on these results, we propose targeted planning and design recommendations for the Southwest Regional Trail. The evaluation methodology and process proposed in this study can provide references for design professionals and relevant urban development departments in conducting spatial narrative quantitative evaluations and optimizing sustainability place-making strategies. Full article
Show Figures

Figure 1

17 pages, 10398 KiB  
Article
Enhancing Route Optimization in Road Transport Systems Through Machine Learning: A Case Study of the Dakhla-Paris Corridor
by Najib El Karkouri, Lahcen Hassine, Younes Ledmaoui, Hasna Chaibi, Rachid Saadane, Nourddine Enneya and Mohamed El Aroussi
Future Transp. 2025, 5(2), 60; https://doi.org/10.3390/futuretransp5020060 - 7 May 2025
Viewed by 1373
Abstract
Road transport systems (RTS) play an essential role in global supply chains, facilitating the efficient transport of goods and services over long distances and thus supporting economic activity on a worldwide scale. However, these systems face numerous challenges, particularly regarding safety, cost, and [...] Read more.
Road transport systems (RTS) play an essential role in global supply chains, facilitating the efficient transport of goods and services over long distances and thus supporting economic activity on a worldwide scale. However, these systems face numerous challenges, particularly regarding safety, cost, and route optimization, requiring innovative and practical solutions to improve their overall performance. This paper proposes an in-depth analysis of RTS features forming a detailed dataset collected on the route between Dakhla (Morocco) and Paris (France). The study relies on applying advanced mathematical modeling techniques and analyzing several datasets to train various machine learning algorithms. The main objective is to identify optimized routes, combining high safety standards, reduced costs, and shorter transport times. The results show that the adopted approach results in safer and more efficient routes and complies with operational and regulatory constraints. Furthermore, this analysis highlights the importance of data quality and the integration of advanced technologies to deliver an intelligent route optimization system with significant reductions in cost and time. Finally, our results reveal that neural networks outperform other algorithms in this field, proving their superior effectiveness for this specific application. Full article
(This article belongs to the Special Issue Feature Papers in Future Transportation)
Show Figures

Figure 1

20 pages, 8177 KiB  
Article
A Position–Force Feedback Optimal Control Strategy for Improving the Passability and Wheel Grounding Performance of Active Suspension Vehicles in a Coordinated Manner
by Donghua Zhao, Mingde Gong, Yaokang Wang and Dingxuan Zhao
Processes 2025, 13(4), 1241; https://doi.org/10.3390/pr13041241 - 19 Apr 2025
Viewed by 370
Abstract
This paper aims to solve the problems of poor mobility, passability, and stability in heavy-duty vehicles, and proposes an active suspension system control strategy based on position–force feedback optimal control to coordinately enhance vehicle passability and wheel grounding performance. Firstly, a two-degrees-of-freedom one-sixth [...] Read more.
This paper aims to solve the problems of poor mobility, passability, and stability in heavy-duty vehicles, and proposes an active suspension system control strategy based on position–force feedback optimal control to coordinately enhance vehicle passability and wheel grounding performance. Firstly, a two-degrees-of-freedom one-sixth vehicle active suspension model and a valve-controlled hydraulic actuator system model are constructed, and the advantages of impedance control in robot compliance control are integrated to analyze their applicability in hydraulic active suspension. Next, a position feedback controller and force feedback LQG optimal controller for fuzzy PID control are designed, the fuzzy PID-LQG (FPL) integrated method is applied to the hydraulic active suspension system, and the dynamic load of the wheel is tracked by impedance control to obtain the spring mass displacement correction. Then, a suspension system model under the excitation of a C-class road surface and a 0.11 m raised road surface is constructed, and the dynamic simulation and comparison of active/passive suspension systems are carried out. The results show that, compared with PS and LQR control, the body vertical acceleration, suspension dynamic deflection, and wheel dynamic load root-mean-square value of the proposed FPL integrated control active suspension are reduced, which can effectively reduce the body vibration and wheel dynamic load and meet the design objectives proposed in this paper, effectively improving vehicle ride comfort, handling stability, passability, and wheel grounding performance. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

20 pages, 13082 KiB  
Article
Exploring the Soundscape in a University Campus: Students’ Perceptions and Eco-Acoustic Indices
by Valentina Zaffaroni-Caorsi, Oscar Azzimonti, Andrea Potenza, Fabio Angelini, Ilaria Grecchi, Giovanni Brambilla, Giorgia Guagliumi, Luca Daconto, Roberto Benocci and Giovanni Zambon
Sustainability 2025, 17(8), 3526; https://doi.org/10.3390/su17083526 - 15 Apr 2025
Cited by 1 | Viewed by 612
Abstract
Urban noise pollution significantly degrades people’s health and well-being and, furthermore, traditional noise reduction strategies often overlook individual perception differences. This study proposed to explore the role of eco-acoustic indices in capturing the interplay between biophony, geophony, and anthrophony, and their relationship with [...] Read more.
Urban noise pollution significantly degrades people’s health and well-being and, furthermore, traditional noise reduction strategies often overlook individual perception differences. This study proposed to explore the role of eco-acoustic indices in capturing the interplay between biophony, geophony, and anthrophony, and their relationship with classical acoustic metrics and the perceived soundscapes within a University Campus (University of “Mila-no-Bicocca”, Italy). The study area is divided in to eight different sites in “Piazza della Scienza” square. Sound measurements and surveys conducted in June 2023 across four paved sites and adjacent courtyards involved 398 participants (51.7% female, 45.6% male, 2.7% other). The main noise sources included road traffic, technical installations, and human activity, where traffic noise was more prominent at street-level sites (Sites 1–4) and technical installations dominated underground courtyards (6–8). Human activity was most noticeable at Sites 4–8, especially at Site 5, which showed the highest activity levels. A circumplex model revealed that street-level sites were less pleasant and eventful than courtyards. Pairwise comparisons of noise variability showed significant differences among sites, with underground locations offering quieter environments. Eco-acoustic analysis identified two site groups: one linked to noisiness and spectral features, the other to intensity distribution metrics. Technical installations, people, and traffic noises showed distinct correlations with acoustic indices, influencing emotional responses like stimulation and liveliness. These findings emphasize the need to integrate subjective perceptions with objective noise metrics in soundscape descriptions. Full article
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Impact of EU Decarbonization Policy on Polish International Road Freight Competitiveness
by Maciej Matczak and Andrzej S. Grzelakowski
Energies 2025, 18(7), 1854; https://doi.org/10.3390/en18071854 - 7 Apr 2025
Viewed by 563
Abstract
Road freight transport is the key driver of the European economy and society; thus, distortion of its operation would have negative influence on growth and well-being. For that reason, implementation of European policies, including transport decarbonization, should be comprehensively evaluated from an environmental, [...] Read more.
Road freight transport is the key driver of the European economy and society; thus, distortion of its operation would have negative influence on growth and well-being. For that reason, implementation of European policies, including transport decarbonization, should be comprehensively evaluated from an environmental, social and economic perspective. In that case, introduction of electric trucks will create a mutual impact on the market and on haulage companies. The main research problem is to assess the future impact of decarbonization on the international road freight transport market structure on the supply side and the competitiveness of companies operating there. Today, a number of small and medium companies, to a great extent from Eastern Europe, render transportation services, creating a competitive structure with high flexibility, accessibility and low prices. Shifting towards electric trucks, with significantly higher upfront costs, will redefine the market structure, eliminating the small carriers and activating horizontal integration. The key objective of this research is to identify the main factors and challenges related to electric truck implementation and define crucial areas of its impact on future market structure. The research shows that the improvement of environmental performance requires low- or zero-emission trucks, where the battery technology is a leading solution. Thus, fleet renewal needs additional financial support from the public side. Different measures are available in European countries, so the level of support is not equal from a competitiveness perspective. Battery truck selling, as well as sustainable strategies, refer mostly to huge transport companies. On the other hand, the case of Polish truckers shows that the economic viability of SMEs is poor; thus, the introduction of BET would be beyond its reach. The research findings could be treated as recommendations for market regulators (EC), where the tempo of implementation, as well as availability of public support programs, should be rethinking. As a result, the costs of the transition will be covered by citizens, as customers, in the prices of products and transport service, or as taxpayers, in public support programs, mainly consumed by large market stakeholders. Full article
Show Figures

Figure 1

17 pages, 5579 KiB  
Article
Optimization of Sensor Targeting Configuration for Intelligent Tire Force Estimation Based on Global Sensitivity Analysis and RBF Neural Networks
by Yu Zhang, Guolin Wang, Haichao Zhou, Jintao Zhang, Xiangliang Li and Xin Wang
Appl. Sci. 2025, 15(7), 3913; https://doi.org/10.3390/app15073913 - 2 Apr 2025
Cited by 1 | Viewed by 452
Abstract
Tire force is a critical state parameter for vehicle dynamics control systems during vehicle operation. Compared with tire force estimation methods relying on vehicle dynamics or tire models, intelligent tire technology can provide real-time feedback regarding tire–road interactions to the vehicle control system. [...] Read more.
Tire force is a critical state parameter for vehicle dynamics control systems during vehicle operation. Compared with tire force estimation methods relying on vehicle dynamics or tire models, intelligent tire technology can provide real-time feedback regarding tire–road interactions to the vehicle control system. To address the demand for accurate tire force prediction in active safety control systems under various operating conditions, this paper proposes an intelligent tire force estimation method, integrating sensor-measured dynamic response parameters and machine learning techniques. A 205/55 R16 radial tire was selected as the research object, and a finite element model was established using the parameterized modeling approach with the ABAQUS finite element simulation software. The validity of the finite element model was verified through indoor static contact and stiffness tests. To investigate the sensitive response areas and variables associated with tire force, the ground deformation area of the inner liner was refined along the transverse and circumferential directions. Variance-based global sensitivity analysis combined with dimensional reduction methods was used to evaluate the sensitivity of acceleration, strain, and displacement responses to variations in longitudinal and lateral forces. Based on the results of the global sensitivity analysis, the influence of longitudinal and lateral forces on sensitive response variables in their respective sensitive response areas was examined, and characteristic values of the corresponding response signal curves were analyzed and extracted. Three intelligent tire force estimation models with different sensor-targeting configurations were established using radial basis function (RBF) neural networks. The mean relative error (MRE) of intelligent tire force estimation for these models remained within 10%, with Model 3 demonstrating an MRE of less than 2% and estimation errors of 1.42% and 1.10% for longitudinal and lateral forces, respectively, indicating strong generalization performance. The results show that tire forces exhibit high sensitivity to acceleration and displacement responses in the crown and sidewall areas, providing methodological guidance for the targeted sensor configuration in intelligent tires. The intelligent tire force estimation method based on the RBF neural network effectively achieves accurate estimation, laying a theoretical foundation for the advancement of vehicle intelligence and technological innovation. Full article
Show Figures

Figure 1

48 pages, 14298 KiB  
Article
A Multi-Level Speed Guidance Cooperative Approach Based on Bidirectional Periodic Green Wave Coordination Under Intelligent and Connected Environment
by Luxi Dong, Xiaolan Xie, Lieping Zhang, Shuiwang Li and Zhiqian Yang
Sensors 2025, 25(7), 2114; https://doi.org/10.3390/s25072114 - 27 Mar 2025
Viewed by 436
Abstract
To maximize arterial green wave bandwidth utilization, this study aims to minimize average travel delays at coordinated intersections and maximize vehicle throughput. In view of the aforementioned points, the present paper sets out a collaborative optimization method for the control of related intersection [...] Read more.
To maximize arterial green wave bandwidth utilization, this study aims to minimize average travel delays at coordinated intersections and maximize vehicle throughput. In view of the aforementioned points, the present paper sets out a collaborative optimization method for the control of related intersection groups. The method combines multi-level speed guidance with green wave coordinated control. In an intelligent and connected environment (ICE), the driving trajectory of the initial vehicle is determined in each optimization cycle following the receipt of active speed guidance. Subsequently, the driving trajectories of subsequent vehicles are calculated, with an assessment made as to whether they can leave the intersection before the end of the green light. The subsequent step involves the calculation of a characteristic index, comprising the average speed of the arterial coordination section and its corresponding phase offset. The phase offset is then optimized with the objective of maximizing the comprehensive bandwidth of green wave coordination within the control range. The maximum average speed and the bidirectional cycle comprehensive green wave bandwidth are employed as the control objectives. Finally, a model is constructed through the combination of multi-level vehicle speed guidance with bidirectional cycle green wave coordinated control. A bi-level combinatorial optimization method is constructed through a combinatorial deep Q learning method, named Deep Q Network-Genetic Algorithm (DQNGA), with the objective of obtaining the global optimal solution. Finally, the reliability of the method is validated using traffic flow data and map sensor data on several associated road sections in a city. The results demonstrate that the proposed method reduces the average delay and number of stops by 20.76% and 44.49%, respectively, outperforming conventional traffic control strategies. This suggests that the issue of inefficient utilization of green light time in arterial coordinated signal control has been effectively addressed. Consequently, the efficiency of intersections in the intelligent and connected environment has been enhanced. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

29 pages, 9796 KiB  
Article
3D-CWC: A Method to Evaluate the Geological Suitability for Layered Development and Utilization of Urban Underground Space
by Jiamin Mo, Ling Zhu, Wei Liu, Ping Wen, Zhiqiang Xie, Rong Li, Chunhou Ji, Wei Cheng, Yangbin Zhang, Chaoya Chen, Qijia Yang and Junxiao Wang
Land 2025, 14(3), 551; https://doi.org/10.3390/land14030551 - 5 Mar 2025
Cited by 2 | Viewed by 730
Abstract
Assessing the geological suitability of urban underground space development is crucial for mitigating geological risks. Traditional 2D evaluation methods fail to capture complex vertical variations in underground space, hindering precise planning. This paper presents an innovative 3D-CWC framework, combining a weighted cloud model [...] Read more.
Assessing the geological suitability of urban underground space development is crucial for mitigating geological risks. Traditional 2D evaluation methods fail to capture complex vertical variations in underground space, hindering precise planning. This paper presents an innovative 3D-CWC framework, combining a weighted cloud model with three-dimensional geological modeling, to address vertical complexity and uncertainty in geological assessments. The study area, located in the northern part of Kunming’s Second Ring Road, is divided into 22 million 25 m × 25 m × 1 m 3D units for evaluation. The framework uses the improved AHP and CRITIC methods to assign weights to key geological indicators, addressing both subjective and objective uncertainty, and employs a cloud model to determine geological suitability levels. The results are visualized using 3D geological modeling. The key findings include the following: (1) approximately 71% of the area within a −50 m depth range is suitable or more suitable for underground space development; (2) active fractures and groundwater are the main unfavorable factors; and (3) the geological suitability varies significantly with depth, with shallow areas being less suitable due to soft soil and complex hydrogeological conditions. The framework is further applied to assess the geological suitability of Kunming Metro Line 10, providing valuable decision support for infrastructure development. Compared to existing methods, this framework integrates cloud modeling and 3D geological modeling, offering a more comprehensive approach to handling underground space complexity. It is adaptable and holds potential for global applications, supporting urban underground space development in diverse geological conditions. Full article
Show Figures

Figure 1

25 pages, 25601 KiB  
Article
An Eye-Tracking Study on Exploring Children’s Visual Attention to Streetscape Elements
by Kaiyuan Sheng, Lian Liu, Feng Wang, Songnian Li and Xu Zhou
Buildings 2025, 15(4), 605; https://doi.org/10.3390/buildings15040605 - 15 Feb 2025
Cited by 5 | Viewed by 1165
Abstract
Urban street spaces play a crucial role in children’s daily commuting and social activities. Therefore, the design of these spaces must give more consideration to children’s perceptual preferences. Traditional street landscape perception studies often rely on subjective analysis, which lacks objective, data-driven insights. [...] Read more.
Urban street spaces play a crucial role in children’s daily commuting and social activities. Therefore, the design of these spaces must give more consideration to children’s perceptual preferences. Traditional street landscape perception studies often rely on subjective analysis, which lacks objective, data-driven insights. This study overcomes this limitation by using eye-tracking technology to evaluate children’s preferences more scientifically. We collected eye-tracking data from 57 children aged 6–12 as they naturally viewed 30 images depicting school commuting environments. Data analysis revealed that the proportions of landscape elements in different street types influenced the visual perception characteristics of children in this age group. On well-maintained main and secondary roads, elements such as minibikes, people, plants, and grass attracted significant visual attention from children. In contrast, commercial streets and residential streets, characterized by greater diversity in landscape elements, elicited more frequent gazes. Children’s eye-tracking behaviors were particularly influenced by vibrant elements like walls, plants, cars, signboards, minibikes, and trade. Furthermore, due to the developmental immaturity of children’s visual systems, no significant gender differences were observed in visual perception. Understanding children’s visual landscape preferences provides a new perspective for researching the sustainable development of child-friendly cities at the community level. These findings offer valuable insights for optimizing the design of child-friendly streets. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 4499 KiB  
Article
A Framework for Informing Complete Street Planning: A Case Study in Brazil
by Ashiley Adelaide Rosa and Fernando Lima
Buildings 2025, 15(1), 125; https://doi.org/10.3390/buildings15010125 - 3 Jan 2025
Viewed by 1056
Abstract
The concept of Complete Streets prompts a re-evaluation of the road design paradigm of the past century, which prioritized vehicles over human-centered use. It seeks to integrate land-use planning with urban mobility, focusing on a safer, more accessible allocation of street space that [...] Read more.
The concept of Complete Streets prompts a re-evaluation of the road design paradigm of the past century, which prioritized vehicles over human-centered use. It seeks to integrate land-use planning with urban mobility, focusing on a safer, more accessible allocation of street space that supports diverse transportation modes, stimulates local economic development, encourages active mobility, and reinforces place identity while recognizing each street’s unique purpose. However, Complete Streets have competing planning demands that vary according to their context and capacity to serve different functions and users. Identifying these priorities and street types is crucial for managing the trade-offs between functions according to each street’s role. This article presents a framework for assessing a street’s purpose and guiding interventions, focusing on the first two of the three key functions of Complete Streets: place, movement, and environment. The proposed framework is flexible and objective while allowing qualitative and subjective insights to be integrated. The preliminary results align with the empirical analysis of street segments, indicating the framework’s potential for diagnosing and evaluating street completeness. The developed experiment helped identify the framework’s limitations and its value as a tool for urban planning and design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop