Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (223)

Search Parameters:
Keywords = acrylic emulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6994 KiB  
Article
Effects of Silica Aerogel Content on the Properties of Waterborne Organic Thermal Insulation Coatings
by Zikang Chen, Dingwei Li, Shengjie Yao, Yumin Duan, Jiahui Chen, Miao Liu, Taoying Liu and Zhi Li
Gels 2025, 11(7), 547; https://doi.org/10.3390/gels11070547 - 15 Jul 2025
Viewed by 434
Abstract
In order to cope with the emergence of energy conservation and consumption reduction initiatives, we used an acrylic emulsion (as the adhesive), combined with silica aerogel (SA) and hollow glass microsphere (HGM) fillers, to synthesize thermal insulation coatings, which were found to have [...] Read more.
In order to cope with the emergence of energy conservation and consumption reduction initiatives, we used an acrylic emulsion (as the adhesive), combined with silica aerogel (SA) and hollow glass microsphere (HGM) fillers, to synthesize thermal insulation coatings, which were found to have low thermal conductivity and excellent thermal insulation properties. These waterborne coatings are environmentally friendly and were synthesized without organic solvents. Comprehensive testing verified that the coatings met practical requirements. Specifically, the addition of 18% SA resulted in minimal thermal conductivity (0.0433 W/m·K), the lowest density (0.177 g/cm3), as well as a reduced gross calorific value. At a heating surface temperature of 200 °C, the 5 mm coating’s cooling surface temperature was 108.7 °C, yielding a 91.3 °C temperature difference and demonstrating remarkable thermal insulation performance. Furthermore, the coatings showed favorable results in terms of water resistance, corrosion resistance, wear resistance, and adhesion, achieving satisfactory engineering standards. In this work, the influence of different contents of SA on various properties of the coating was studied, with the aim of providing a reference for the modulation of the comprehensive performance of SA thermal insulation coatings. Full article
(This article belongs to the Special Issue Aerogels: Recent Progress in Novel Applications)
Show Figures

Graphical abstract

14 pages, 4450 KiB  
Article
Performance Evaluation of Waterborne Epoxy Resin-Reinforced SBS, Waterborne Acrylate or SBR Emulsion for Road
by Hao Fu and Chaohui Wang
Coatings 2025, 15(7), 787; https://doi.org/10.3390/coatings15070787 - 3 Jul 2025
Viewed by 331
Abstract
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of [...] Read more.
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of these waterborne polymers were evaluated. Furthermore, the correlation between the performance indicators of the waterborne polymers was analyzed. Based on Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis, the mechanism of WER-modified SBS and WA was characterized. The results show that adding 10%–15% WER can significantly improve the mechanical properties of the waterborne polymer. The performances of modified SBS and WA are better than that of modified SBR. When the content of WER is 10%, the tensile strength, elongation at break and pull-off strength of WER-modified SBS and WA are 4.80–6.38 MPa, 476.3%–579.6% and 1.62–1.70 MPa, respectively. The mechanical strength and breaking energy of the waterborne polymers show a significant linear correlation with their application properties such as adhesion, bonding and impact resistance. FTIR and TG analyses indicate that WER-modified SBS or WA prepared via emulsion blending undergo primarily physical modifications, enhancing thermal stability while promoting crosslinking and curing. Full article
(This article belongs to the Special Issue Green Asphalt Materials—Surface Engineering and Applications)
Show Figures

Figure 1

27 pages, 7784 KiB  
Article
Performance and Mechanism Analysis of an Anti-Skid Wear Layer of Active Slow-Release Ice–Snow Melting Modified by Gels
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Haobo Yan and Qi Chen
Gels 2025, 11(6), 449; https://doi.org/10.3390/gels11060449 - 11 Jun 2025
Viewed by 535
Abstract
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate [...] Read more.
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0–80% content), we systematically evaluate its mechanical performance and de-icing functionality. The experimental results demonstrate that 40% salt-storing ceramsite content optimizes high-temperature stability while maintaining acceptable low-temperature performance and water resistance. Microstructural analysis reveals that silicone–acrylic emulsion forms a hydrophobic film on ceramsite surfaces, enabling uniform salt distribution and sustained release. The optimal 10% gel modification achieves effective salt retention and controlled release through pore-structure regulation. These findings establish a 40–60% salt-storing ceramsite content range as the practical range for winter pavement applications, offering insights into the design of durable snow-melting asphalt surfaces. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

36 pages, 2776 KiB  
Review
Superabsorbent Core/Shell Composite Materials: A Review on Synthesis, Design and Applications
by Maria Pastrafidou, Evangelia C. Vouvoudi, Vassilios Binas and Ioannis A. Kartsonakis
Polymers 2025, 17(11), 1461; https://doi.org/10.3390/polym17111461 - 24 May 2025
Viewed by 1157
Abstract
Superabsorbent core/shell composite materials are a type of advanced materials presenting enhanced water absorption and retention capabilities. The central core material can swell and absorb water covered by a shell that serves a specific function. The composition and functionality of each layer can [...] Read more.
Superabsorbent core/shell composite materials are a type of advanced materials presenting enhanced water absorption and retention capabilities. The central core material can swell and absorb water covered by a shell that serves a specific function. The composition and functionality of each layer can be tailored to improve the material’s performance. The core is typically fabricated from superabsorbent polymers such as sodium polyacrylate, poly(acrylic acid) or other hydrophilic materials. The shell can be either inorganic polymers or organic polymers such as poly(methyl methacrylate), biodegradable polymers, polysaccharides or other functionalized materials in order to enhance biodegradability, mechanical strength or responsiveness to stimuli (e.g., temperature, pH). These materials present enormous potential to address issues for versatile applications in various fields, including biomedical applications, hygiene products and agriculture, due to their tailored structure. The common synthesis techniques for these advanced materials are emulsion polymerization, in situ polymerization, suspension polymerization with respect to the core material, layer-by-layer assembly and the sol–gel technique with respect to the shell formation. The techniques that are usually utilized for the characterization of the aforementioned materials and the validation of their functionalities are based on thermal analysis, morphology studies and swelling behavior and water retention and release mechanical properties, respectively. This review offers an in-depth examination of recent advancements in synthesis methods, structural engineering approaches and emerging applications of superabsorbent core/shell composites, highlighting the critical importance of material design in boosting their performance and broadening their practical use. Finally, special attention is devoted to the future perspectives of superabsorbent core/shell composites, exploring potential innovations in material design and multifunctionality. Emerging trends such as stimuli-responsive behavior, sustainability and scalability are discussed as key factors for next-generation applications. The review also outlines challenges and opportunities that could guide future research and industrial implementation. Full article
(This article belongs to the Special Issue Surface and Interface Analysis of Polymeric Materials)
Show Figures

Graphical abstract

23 pages, 16849 KiB  
Article
Preparation and Corrosion Resistance Research of Eco-Friendly Strong Penetration Sealant for Fe-Based Amorphous Coatings
by Guangyu Wang, Yinfang Jiang, Zehua Zhou, Jianhua Sun, Yang Cheng, Shenghua Zhang and Yuzhi Tang
Coatings 2025, 15(6), 623; https://doi.org/10.3390/coatings15060623 - 23 May 2025
Viewed by 558
Abstract
Sealing treatment is widely used as a simple and low-cost process to improve the long-term corrosion resistance of Fe-based amorphous coatings. In this study, an eco-friendly graphene modified waterborne acrylic sealant(WFS) with strong permeability was prepared by emulsion polymerization and GO@SiO2 was [...] Read more.
Sealing treatment is widely used as a simple and low-cost process to improve the long-term corrosion resistance of Fe-based amorphous coatings. In this study, an eco-friendly graphene modified waterborne acrylic sealant(WFS) with strong permeability was prepared by emulsion polymerization and GO@SiO2 was introduced as a reinforcing material to increase the withstand resistance of the hybrid sealant to Cl. A combination of ultrasonic excitation and vacuum sealing effectively promotes the penetration of the waterborne hybrid sealant into the pores of the coating. A 3D X-ray scan confirmed the sealant penetration depth of 160 μm. The natural properties of the emulsion were characterized by a particle size analyzer, FTIR, TGA-DSC and TEM. Potentiodynamic polarization curves and AC impedance spectroscopy analysis showed that GO@SiO2 has a strong blocking ability to Cl, which greatly promotes the integrity of the passive film. It is anticipated that the novel eco-friendly waterborne hybrid sealants with strong permeability will find applications in a variety of porous hard coatings. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

19 pages, 6588 KiB  
Article
Research on the Effects of Poly(Styrene-co-Butyl Acrylate) Emulsions on the Mechanical and Fracture Characteristics of Mortar
by Guolin Miao, Peng Jiang, Wenxun Guan, Wanying Ma, Guanzhi Cheng, Xiangtao Li and Yangyang Gao
Appl. Sci. 2025, 15(9), 4822; https://doi.org/10.3390/app15094822 - 26 Apr 2025
Viewed by 303
Abstract
A series of poly(styrene-co-butyl acrylate) (PSA) emulsions with different monomer ratios were synthesized and characterized, and corresponding polymer-modified mortars were prepared. The effects of polymers with different rigidities on the properties of modified mortars, including the hydration heat, mechanical strength, compressive–flexural [...] Read more.
A series of poly(styrene-co-butyl acrylate) (PSA) emulsions with different monomer ratios were synthesized and characterized, and corresponding polymer-modified mortars were prepared. The effects of polymers with different rigidities on the properties of modified mortars, including the hydration heat, mechanical strength, compressive–flexural ratio, fracture energy, and fracture toughness, were investigated. The results indicate that, as the content of hard monomers in the polymer increases, the fracture energy of the modified mortar first increases and then decreases, consistent with the changes in the polymer’s damping properties. The maximum fracture energy of 211.2 N/m was achieved at a St/BA mass ratio of 4:6 and a polymer-to-cement ratio (P/C) of 15%, which was 2.4 times higher than that of the control mortar group. The fracture toughness of the modified mortar decreased with an increasing polymer doping and decreasing hard monomer content. The compressive–flexural ratio of the modified mortar decreased only with increasing the polymer emulsion dosage, showing no significant correlation with the polymer’s molecular structure. Full article
Show Figures

Figure 1

28 pages, 10216 KiB  
Article
Stability and Degradation Issues of Manganese Violet Pigment in Polymeric Paints: Morphological and Chemical Changes Under SO2 and Humidity Exposure
by Laura Pagnin, Giulia Cardin, Valentina Pintus, Michele Back, Farkas Pintér, Katja Sterflinger and Francesca Caterina Izzo
Appl. Sci. 2025, 15(9), 4630; https://doi.org/10.3390/app15094630 - 22 Apr 2025
Viewed by 808
Abstract
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. [...] Read more.
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. In particular, this study aims to investigate the role of PV16 in increasing the degradation processes of various modern binders. Therefore, the objectives of this research can be divided into (i) evaluating the chemical modifications involving PV16, (ii) investigating the degradation processes that occur in different organic matrices (i.e., drying oil, alkyd resin, and acrylic and styrene–acrylic emulsions), and (iii) comparing the chemical stability of model and commercial paints. The paints were analyzed by 3D Optical Microscopy, Attenuated total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR) and μ-Raman Spectroscopy, Scanning Electron Microscope coupled with Energy Dispersive X-Ray spectroscopy (SEM-EDX), X-Ray Powder Diffraction (XRPD), Fiber Optic Reflectance Spectroscopy (FORS), Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC/MS), and Thermally assisted Hydrolysis and Methylation (THM) of Py-GC/MS (THM-Py-GC/MS). The results show that when exposed to high relative humidity and SO2, PV16 presents a colorimetric change from violet to grey; several compounds crystallize on the surface; and, depending on the binder, various degradation reactions occur. This study highlights the susceptibility of manganese violet pigment PV16 under certain environmental conditions, which may be considered to define adequate conservation strategies for works of art containing this specific pigment. Additionally, the results obtained within this investigation point out the need to expand the chemical knowledge of this material for engineering, sensing, and industrial applications. Full article
Show Figures

Figure 1

13 pages, 10456 KiB  
Article
Research on the Mechanical Properties and Modification Mechanisms of Orthogonal Optimization Composite Cement-Based Thin Spray On-Liner
by Diantao Zheng, Xinming Chen, Huazhe Jiao, Liuhua Yang, Xiaohui Liu, Yulong Han and Ziyang Liu
Materials 2025, 18(8), 1837; https://doi.org/10.3390/ma18081837 - 17 Apr 2025
Viewed by 362
Abstract
Thin spray on-liner (TSL) is a new type of rock support technology, but ordinary cement-based TSL has low tensile strength and poor toughness, which makes it difficult to meet the challenges of large deformation of coal mine roadway perimeter rock surface maintenance. A [...] Read more.
Thin spray on-liner (TSL) is a new type of rock support technology, but ordinary cement-based TSL has low tensile strength and poor toughness, which makes it difficult to meet the challenges of large deformation of coal mine roadway perimeter rock surface maintenance. A high-performance composite cement-based TSL was obtained by adding acrylic emulsion, basalt fiber and rubber powder to modify ordinary Portland cement. The orthogonal test and range analysis method were used to systematically study the change law of the physical and mechanical properties of the composite cement-based TSL, determine its reasonable ratio, and further microscopic analysis to find out the modification mechanism. The results show that the reasonable ratio of composite cement-based TSL is as follows: polymer–cement ratio is 1.75, basalt fiber content is 1%, and rubber powder content is 3%; that is, the viscosity is 20,000 mps, and the elongation, tensile strength and adhesive strength in 28 d are 121%, 2.28 Mpa, and 1.66 Mpa, respectively. When the acrylic emulsion-basalt fiber-rubber powder is compositely modified, the acrylic emulsion cures and the cement hydration product to form a three-dimensional space network structure, which increases the compactness, the basalt fiber reduces the porosity of the matrix, inhibits the development of matrix cracks, and the rubber powder improves the elongation of the matrix and jointly improves the mechanical properties of TSL. This study provides a theoretical basis for the preparation of composite cement-based TSL. Full article
Show Figures

Figure 1

22 pages, 6784 KiB  
Article
Synergistic Effects of Hybrid Bio-Fillers and Modified Natural Rubber on Natural Rubber Composite Properties
by Supharat Inphonlek, Namthip Bureewong, Supawat Kotchapradit, Yupaporn Ruksakulpiwat and Chaiwat Ruksakulpiwat
Polymers 2025, 17(5), 632; https://doi.org/10.3390/polym17050632 - 26 Feb 2025
Cited by 1 | Viewed by 1497
Abstract
This work aims to investigate the synergistic effects of hybrid bio-fillers and compatibilizers on the properties of natural rubber composites. Rice husk silica (RSi) and hydroxyapatite (HA), derived from rice husk ash and seabass fish scales, respectively, were successfully prepared and used as [...] Read more.
This work aims to investigate the synergistic effects of hybrid bio-fillers and compatibilizers on the properties of natural rubber composites. Rice husk silica (RSi) and hydroxyapatite (HA), derived from rice husk ash and seabass fish scales, respectively, were successfully prepared and used as bio-fillers. Poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber (gDPNR) was synthesized via emulsion graft copolymerization, achieving a grafting efficiency and grafting percentage of 15.94 and 4.23%, respectively. The gDPNR was utilized as a compatibilizer in the preparation of natural rubber composites. The addition of hybrid bio-fillers at an RSi-to-HA ratio of 25:75 exhibited superior mechanical properties compared to composites containing a single filler. The incorporation of gDPNR improved filler dispersion and interfacial adhesion between the NR matrix and the bio-fillers, further enhancing the mechanical, thermal, and dielectric properties. The composite with hybrid bio-fillers and 10 phr of gDPNR exhibited the highest tensile strength, showing a 2.10-fold and 1.06-fold improvement over neat natural rubber composite and hybrid filler composite without compatibilizer, respectively. The presence of polar functional groups in gDPNR enhanced the dielectric constant of the natural rubber composites. These composites could have potential in sustainable industrial applications, including flexible electronics and eco-friendly devices. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

9 pages, 4227 KiB  
Article
Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems
by Rong Ma, Bingqian Wu and Qingsheng Wang
Polymers 2025, 17(5), 626; https://doi.org/10.3390/polym17050626 - 26 Feb 2025
Viewed by 761
Abstract
To develop a highly efficient and environmentally friendly flame-retardant system, ionic liquids (ILs) have recently emerged as promising candidates. However, the addition of ILs into emulsion paint disrupts emulsion stability, leading to rapid demulsification due to electrostatic effects. Herein, IL–silica capsules were developed [...] Read more.
To develop a highly efficient and environmentally friendly flame-retardant system, ionic liquids (ILs) have recently emerged as promising candidates. However, the addition of ILs into emulsion paint disrupts emulsion stability, leading to rapid demulsification due to electrostatic effects. Herein, IL–silica capsules were developed using a soft-template method. These capsules can be directly added to an acrylic emulsion paint system as flame-retardant additives. Incorporating 5 wt% IL–silica capsules into the system and coating it on fabric reduced flammability by 53% compared to untreated fabric. This work provides a novel and practical approach to enhance flame retardancy in emulsion paint systems without compromising their stability. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 8327 KiB  
Article
Preparation of Polymerized High Internal Phase Emulsion Membranes with High Open-Cellular Extent and High Toughness via RAFT Polymerization
by Yulan Wu, Jie Huang, Zanru Guo, Qian Yang, Chunmiao Xia and Zhenan Zheng
Polymers 2025, 17(4), 515; https://doi.org/10.3390/polym17040515 - 17 Feb 2025
Cited by 4 | Viewed by 864
Abstract
Porous polymer membranes with highly interconnected open-cellular structure and high toughness are crucial for various application fields. Polymerized high internal phase emulsions (polyHIPEs), which usually exist as monoliths, possess the advantages of high porosity and good connectivity. However, it is difficult to prepare [...] Read more.
Porous polymer membranes with highly interconnected open-cellular structure and high toughness are crucial for various application fields. Polymerized high internal phase emulsions (polyHIPEs), which usually exist as monoliths, possess the advantages of high porosity and good connectivity. However, it is difficult to prepare membranes due to brittleness and easy pulverization. Copolymerizing acrylate soft monomers can effectively improve the toughness of polyHIPEs, but it is easy to cause emulsion instability and pore collapse. In this paper, stable HIPEs with a high content of butyl acrylate (41.7 mol% to 75 mol% based on monomers) can be obtained by using a composite emulsifier (30 wt.% based on monomers) consisting of Span80/DDBSS (9/2 in molar ratio) and adding 0.12 mol·L−1 CaCl2 according to aqueous phase concentration. On this basis, polyHIPE membranes with high open-cellular extent and high toughness are firstly prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization. The addition of the RAFT agent significantly improves the mechanical properties of polyHIPE membranes without affecting open-cellular structure. The toughness of polyHIPE membranes prepared by RAFT polymerization is significantly enhanced compared with conventional free radical polymerization. When the molar ratio of butyl acrylate/styrene/divinylbenzene is 7/4/1, the polyHIPE membrane prepared by RAFT polymerization presents plastic deformation during the tensile test. The toughness modulus reaches 93.04 ± 12.28 kJ·m−3 while the open-cellular extent reaches 92.35%, and it also has excellent thermal stability. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2318 KiB  
Article
Preparation and Properties of Epoxy Modified Acrylic Polymer
by Shiyan Zhou, Jinmei Ma, Jun-Wen Yu, Zhigang Gao, Fei Li, Fenghua Zhang and Yu-Peng He
Polymers 2025, 17(3), 380; https://doi.org/10.3390/polym17030380 - 30 Jan 2025
Cited by 2 | Viewed by 1168
Abstract
This paper describes the synthesis of a viscosity-reducing agent using butyl acrylate (BA), ethyl methacrylate (EMA), acrylic acid (AA) and N-hydroxymethylacrylamide (N-MAM) monomers through emulsion polymerization. A series of viscosity-reducing agents were developed by incorporating varying amounts of glycidyl methacrylate (GMA) monomers. [...] Read more.
This paper describes the synthesis of a viscosity-reducing agent using butyl acrylate (BA), ethyl methacrylate (EMA), acrylic acid (AA) and N-hydroxymethylacrylamide (N-MAM) monomers through emulsion polymerization. A series of viscosity-reducing agents were developed by incorporating varying amounts of glycidyl methacrylate (GMA) monomers. The reaction mechanism of epoxy acrylate viscosity reducer was analyzed by Fourier transform infrared spectroscopy (FTIR). Additionally, the particle size and Zeta potential were used to analyze the stability of the polymer and the difference in the polymer after adding GMA monomer. Thermogravimetric (TG) analysis indicated a significant improvement in the thermal stability of the resin due to GMA modification. The viscosity reduction test results demonstrated a substantial decrease in the viscosity of heavy oil, along with a notable increase in the viscosity reduction rate. The FTIR analysis results confirmed that GMA successfully introduced polyacrylate molecular chains. Furthermore, particle size and Zeta potential measurements showed that the average particle size of the emulsion increased from 132 nm to 187 nm, while the Zeta potential changed from −43 mV to −40 mV with the addition of 15% GMA. Compared with W0, the final thermal degradation temperature of W15 increased from 450 °C to 517 °C. When the GMA content reached 15 wt%, the maximum weight loss temperature increased by approximately 12 °C compared to the sample without GMA. Specifically, adding 8% W15 epoxy acrylate resulted in an 89% viscosity reduction rate for heavy oil, demonstrating an excellent viscosity reduction effect. This study successfully developed a novel epoxy acrylate viscosity reducer using a simple synthesis method, showcasing excellent stability, cost-effectiveness and remarkable viscosity reduction. Full article
(This article belongs to the Special Issue Surface and Interface Analysis of Polymeric Materials)
Show Figures

Figure 1

13 pages, 12021 KiB  
Article
Production of Monodisperse Oil-in-Water Droplets and Polymeric Microspheres Below 20 μm Using a PDMS-Based Step Emulsification Device
by Naotomo Tottori, Seungman Choi and Takasi Nisisako
Micromachines 2025, 16(2), 132; https://doi.org/10.3390/mi16020132 - 24 Jan 2025
Cited by 2 | Viewed by 1401
Abstract
Step emulsification (SE) is renowned for its robustness in generating monodisperse emulsion droplets at arrayed nozzles. However, few studies have explored poly(dimethylsiloxane) (PDMS)-based SE devices for producing monodisperse oil-in-water (O/W) droplets and polymeric microspheres with diameters below 20 µm—materials with broad applicability. In [...] Read more.
Step emulsification (SE) is renowned for its robustness in generating monodisperse emulsion droplets at arrayed nozzles. However, few studies have explored poly(dimethylsiloxane) (PDMS)-based SE devices for producing monodisperse oil-in-water (O/W) droplets and polymeric microspheres with diameters below 20 µm—materials with broad applicability. In this study, we present a PDMS-based microfluidic SE device designed to achieve this goal. Two devices with 264 nozzles each were fabricated, featuring straight and triangular nozzle configurations, both with a height of 4 µm and a minimum width of 10 µm. The devices were rendered hydrophilic via oxygen plasma treatment. A photocurable acrylate monomer served as the dispersed phase, while an aqueous polyvinyl alcohol solution acted as the continuous phase. The straight nozzles produced polydisperse droplets with diameters exceeding 30 µm and coefficient-of-variation (CV) values above 10%. In contrast, the triangular nozzles, with an opening width of 38 µm, consistently generated monodisperse droplets with diameters below 20 µm, CVs below 4%, and a maximum throughput of 0.5 mL h−1. Off-chip photopolymerization of these droplets yielded monodisperse acrylic microspheres. The low-cost, disposable, and scalable PDMS-based SE device offers significant potential for applications spanning from laboratory-scale research to industrial-scale particle manufacturing. Full article
(This article belongs to the Special Issue Recent Advances in Droplet Microfluidics)
Show Figures

Figure 1

20 pages, 3010 KiB  
Article
Synthesis of Acrylic–Urethane Hybrid Polymer Dispersions and Investigations on Their Properties as Binders in Leather Finishing
by Selime Keskin, Catalina N. Cheaburu-Yilmaz, Aylin Altinisik Tagac, Raluca Nicoleta Darie-Nita and Onur Yilmaz
Polymers 2025, 17(3), 308; https://doi.org/10.3390/polym17030308 - 24 Jan 2025
Viewed by 1296
Abstract
This study investigates the synthesis and application of acrylic–urethane hybrid polymer dispersions as advanced binders for leather finishing. Two polymerization techniques—seeded emulsion and miniemulsion—were used to produce hybrid polymer dispersions by varying the ratios of polyurethane (PU) and acrylic (AC). The synthesized dispersions, [...] Read more.
This study investigates the synthesis and application of acrylic–urethane hybrid polymer dispersions as advanced binders for leather finishing. Two polymerization techniques—seeded emulsion and miniemulsion—were used to produce hybrid polymer dispersions by varying the ratios of polyurethane (PU) and acrylic (AC). The synthesized dispersions, i.e., the hybrid polyurethanes, showed stable, uniform particle sizes, inferring good compatibility and interaction between the PU and AC phases, as confirmed by particle sizes, FTIR, and DSC analyses. The performance of the coating on leather surfaces was assessed by using standard physical tests, including rubbing fastness, flexing endurance, water spot resistance, and grain strength. The results showed that the hybrid polymers outperformed their individual PU and AC counterparts, particularly in terms of abrasion resistance and mechanical integrity. Of the two polymerization techniques, the seeded emulsion hybrids exhibited superior coating properties, providing greater resistance to cracking and abrasion under stress, improved grain strength, and better color retention during rubbing tests. These findings highlight the potential of acrylic–urethane hybrids, particularly those prepared via seeded emulsion polymerization, to address the limitations of traditional binders in high-performance leather applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

27 pages, 8078 KiB  
Article
Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields
by Shuai Wang, Lanbing Wu, Lu Zhang, Yaui Zhao, Le Qu, Yongfei Li, Shanjian Li and Gang Chen
Polymers 2025, 17(2), 217; https://doi.org/10.3390/polym17020217 - 16 Jan 2025
Cited by 2 | Viewed by 828
Abstract
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw [...] Read more.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil–water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil–water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.03% of the total mass of the reaction system, the reaction time was 4 h, the reaction temperature was 50 °C, the aqueous pH was 6.5, and the monomer dosage was 30% of the total mass of the reaction system (monomeric molar ratio n(AM):n(AA):n(SSS):n(DMAAC-16) = 79.2:20:0.5:0.3). X-ray diffraction analysis (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy analysis were carried out on the polymerization products. At the same time, a series of performance test experiments such as thickening performance, temperature and shear resistance, salt resistance, sand suspension performance, core damage performance, and fracturing fluid flowback fluid reuse were carried out to evaluate the comprehensive effect and efficiency of the synthetic products, and the results show that the P(AM/AA/SSS/DMAAC-16) polymer had excellent solubility and excellent properties such as temperature and shear resistance. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop