Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = acetylation of atrophy signaling pathways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2704 KiB  
Article
Rice Germ Attenuates Chronic Unpredictable Mild Stress-Induced Muscle Atrophy
by Sosorburam Batsukh, Seyeon Oh, Kyoungmin Rheu, Bae-Jin Lee, Chang Hu Choi, Kuk Hui Son and Kyunghee Byun
Nutrients 2023, 15(12), 2719; https://doi.org/10.3390/nu15122719 - 12 Jun 2023
Cited by 1 | Viewed by 3013
Abstract
Chronic stress leads to hypothalamic–pituitary–adrenal axis dysfunction, increasing cortisol levels. Glucocorticoids (GCs) promote muscle degradation and inhibit muscle synthesis, eventually causing muscle atrophy. In this study, we aimed to evaluate whether rice germ supplemented with 30% γ-aminobutyric acid (RG) attenuates muscle atrophy in [...] Read more.
Chronic stress leads to hypothalamic–pituitary–adrenal axis dysfunction, increasing cortisol levels. Glucocorticoids (GCs) promote muscle degradation and inhibit muscle synthesis, eventually causing muscle atrophy. In this study, we aimed to evaluate whether rice germ supplemented with 30% γ-aminobutyric acid (RG) attenuates muscle atrophy in an animal model of chronic unpredictable mild stress (CUMS). We observed that CUMS raised the adrenal gland weight and serum adrenocorticotropic hormone (ACTH) and cortisol levels, and these effects were reversed by RG. CUMS also enhanced the expression of the GC receptor (GR) and GC–GR binding in the gastrocnemius muscle, which were attenuated by RG. The expression levels of muscle degradation-related signaling pathways, such as the Klf15, Redd-1, FoxO3a, Atrogin-1, and MuRF1 pathways, were enhanced by CUMS and attenuated by RG. Muscle synthesis-related signaling pathways, such as the IGF-1/AKT/mTOR/s6k/4E-BP1 pathway, were reduced by CUMS and enhanced by RG. Moreover, CUMS raised oxidative stress by enhancing the levels of iNOS and acetylated p53, which are involved in cell cycle arrest, whereas RG attenuated both iNOS and acetylated p53 levels. Cell proliferation in the gastrocnemius muscle was reduced by CUMS and enhanced by RG. The muscle weight, muscle fiber cross-sectional area, and grip strength were reduced by CUMS and enhanced by RG. Therefore, RG attenuated ACTH levels and cortisol-related muscle atrophy in CUMS animals. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

28 pages, 7569 KiB  
Article
Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius
by Laura Mañas-García, Nuria Bargalló, Joaquim Gea and Esther Barreiro
Nutrients 2020, 12(2), 388; https://doi.org/10.3390/nu12020388 - 31 Jan 2020
Cited by 17 | Viewed by 4322
Abstract
We hypothesized that curcumin may mitigate muscle protein degradation and loss through attenuation of proteolytic activity in limb muscles of mice exposed to reloading (7dR) following immobilization (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to recovery following a seven-day period [...] Read more.
We hypothesized that curcumin may mitigate muscle protein degradation and loss through attenuation of proteolytic activity in limb muscles of mice exposed to reloading (7dR) following immobilization (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to recovery following a seven-day period of hindlimb immobilization with/without curcumin treatment, markers of muscle proteolysis (systemic troponin-I), atrophy signaling pathways and histone deacetylases, protein synthesis, and muscle phenotypic characteristics and function were analyzed. In gastrocnemius of reloading mice compared to unloaded, muscle function, structure, sirtuin-1, and protein synthesis improved, while proteolytic and signaling markers (FoxO1/3) declined. In gastrocnemius of unloaded and reloaded mice treated with curcumin, proteolytic and signaling markers (NF-kB p50) decreased and sirtuin-1 activity and hybrid fibers size increased (reloaded muscle), while no significant improvement was seen in muscle function. Treatment with curcumin elicited a rise in sirtuin-1 activity, while attenuating proteolysis in gastrocnemius of mice during reloading following a period of unloading. Curcumin attenuated muscle proteolysis probably via activation of histone deacetylase sirtuin-1, which also led to decreased levels of atrophy signaling pathways. These findings offer an avenue of research in the design of therapeutic strategies in clinical settings of patients exposed to periods of disuse muscle atrophy. Full article
(This article belongs to the Special Issue Muscle Strength and Muscle Quality in Relation to Nutrition)
Show Figures

Figure 1

Back to TopTop