Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = acetone pretreatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2011 KiB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 155
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

21 pages, 2673 KiB  
Article
Anti-Hyperalgesic Effect of Isopulegol Involves GABA and NMDA Receptors in a Paclitaxel-Induced Neuropathic Pain Model
by Deyna Martins, Boris Acha, Mickael Cavalcante, Suellen Pereira, Ana Viana, Flaviano Ribeiro Pinheiro-Neto, Priscyla Mendes, Dalton Dittz-Júnior, Francisco Oliveira, Tatiana Ventura, Maria da Graça Lobo, Fátima Ferreirinha, Paulo Correia-de-Sá and Fernanda Almeida
Pharmaceuticals 2025, 18(2), 256; https://doi.org/10.3390/ph18020256 - 14 Feb 2025
Viewed by 1259
Abstract
Background: Neuropathic pain can be triggered by chemotherapy drugs such as paclitaxel (PTX). Management of pain is limited by drugs’ ineffectiveness and adverse effects. Isopulegol (ISO) is a monoterpene present in the essential oils of several aromatic plants and has promising pharmacological [...] Read more.
Background: Neuropathic pain can be triggered by chemotherapy drugs such as paclitaxel (PTX). Management of pain is limited by drugs’ ineffectiveness and adverse effects. Isopulegol (ISO) is a monoterpene present in the essential oils of several aromatic plants and has promising pharmacological activities. Objectives: to evaluate the antinociceptive activity of ISO in a PTX-induced neuropathic pain model. Methods: the toxicity of ISO was evaluated in healthy and cancerous cells. Behavioral assessments were performed using the von Frey and acetone tests. We investigated the involvement of the GABAergic pathway, NMDA, TNF-α, and the release of GABA and glutamate in the presence of ISO. Results: ISO showed little or no cytotoxicity in U87 and MDA-MB-231 cells. In both acute and subacute treatment, ISO at doses of 25, 50, and 100 mg/kg (* p < 0.05) increased the mechanical nociceptive threshold of neuropathic animals compared to the control group and reduced thermal sensitivity. Its action was reversed by pre-treatment with flumazenil and potentiated by the NMDA antagonist, MK-801. TNF-α and glutamate levels were reduced and GABA release was increased in the tests carried out. Conclusions: ISO shows low toxicity in neuronal cells and its association with PTX generated synergism in its cytotoxic action. The antinociceptive effect of ISO is due to activation of GABA and antagonism of NMDA receptors and involves the stabilization of neuronal plasma membranes leading to an imbalance in the release of neurotransmitters, favoring GABA-mediated inhibition over glutamatergic excitation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

12 pages, 5960 KiB  
Article
CRDS Technology-Based Integrated Breath Gas Detection System for Breath Acetone Real-Time Accurate Detection Application
by Jing Sun, Dongxin Shi, Le Wang, Xiaolin Yu, Binghong Song, Wangxin Li, Jiankun Zhu, Yong Yang, Bingqiang Cao and Chenyu Jiang
Chemosensors 2024, 12(12), 261; https://doi.org/10.3390/chemosensors12120261 - 13 Dec 2024
Cited by 1 | Viewed by 1254
Abstract
The monitoring of acetone in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of summarized physiological metabolic status during obesity treatment. Although the commonly used Mass Spectrometry (MS) technology has high accuracy, the long detection time and [...] Read more.
The monitoring of acetone in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of summarized physiological metabolic status during obesity treatment. Although the commonly used Mass Spectrometry (MS) technology has high accuracy, the long detection time and large equipment size limit the application of daily bedside detection. As for the real-time and accurate detection of acetone, the gas sensor has become the best choice of gas detection technology, but it is easy to be disturbed by water vapor in breath gas. An integrated breath gas detection system based on cavity ring-down spectroscopy (CRDS) is reported in this paper, which is a laser absorption spectroscopy technique with high-sensitivity detection and absolute quantitative analysis. The system uses a 266 nm single-wavelength ultraviolet laser combined with a breath gas pretreatment unit to effectively remove the influence of water vapor. The ring-down time of this system was 1.068 μs, the detection sensitivity was 1 ppb, and the stability of the system was 0.13%. The detection principle of the integrated breath gas detection system follows Lambert–Beer’s law, which is an absolute measurement with very high detection accuracy, and was further validated by Gas Chromatography–Mass Spectrometer (GC-MS) testing. Significant differences in the response of the integrated breath gas detection system to simulated gases containing different concentrations of acetone indicate the potential of the system for the detection of trace amounts of acetone. Meanwhile, the monitoring of acetone during obesity treatment also signifies the feasibility of this system in the dynamic monitoring of physiological indicators, which is not only important for the optimization of the obesity treatment process but also promises to shed further light on the interaction between obesity treatment and physiological metabolism in medicine. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

14 pages, 3068 KiB  
Article
Catalytic Oxidation of Acetone over MnOx-SiO2 Catalysts: An Effective Approach to Valorize Rice Husk Waste
by Mauricio Cardoso, Patrice Portugau, Carolina De Los Santos, Ricardo Faccio, Hilario Vidal, José Manuel Gatica, María del Pilar Yesté, Jorge Castiglioni and Martin Torres
Materials 2024, 17(24), 6069; https://doi.org/10.3390/ma17246069 - 12 Dec 2024
Viewed by 869
Abstract
Rice husk, a byproduct of rice production, poses significant environmental challenges due to disposal issues, while the emission of volatile organic compounds into the atmosphere further exacerbates these concerns. This study addresses both problems by exploring the potential of texturally enhanced SiO2 [...] Read more.
Rice husk, a byproduct of rice production, poses significant environmental challenges due to disposal issues, while the emission of volatile organic compounds into the atmosphere further exacerbates these concerns. This study addresses both problems by exploring the potential of texturally enhanced SiO2, derived from Uruguayan rice husk, as a catalytic support for manganese oxides in the combustion of volatile organic compounds. SiO2 was synthesized from rice husk ash using a sustainable, acid-free pretreatment method, yielding a notably high silica purity of 96.5%—a level comparable to or exceeding previously reported values, highlighting the high silica quality inherent in Uruguayan rice husk. The catalytic activity was evaluated using acetone as a model volatile organic compound, achieving up to 90% conversion with 30 wt.% manganese oxide at 300 °C, with CO2 as the primary product. Furthermore, a 24 h stability test demonstrated consistent performance, maintaining a conversion rate of around 95.6 ± 2.5%. These findings suggest that high-purity SiO2 derived from Uruguayan rice husk, with its sustainability benefits, offers an effective solution for acetone removal when supporting an active phase such as manganese oxides, addressing both rice husk disposal and volatile organic compound emissions. Full article
Show Figures

Graphical abstract

12 pages, 3027 KiB  
Article
Intranasal Treatment with Cannabinoid 2 Receptor Agonist HU-308 Ameliorates Cold Sensitivity in Mice with Traumatic Trigeminal Neuropathic Pain
by Simeng Ma, Yoki Nakamura, Suzuna Uemoto, Kenta Yamamoto, Kazue Hisaoka-Nakashima and Norimitsu Morioka
Cells 2024, 13(23), 1943; https://doi.org/10.3390/cells13231943 - 22 Nov 2024
Viewed by 1496
Abstract
Post-traumatic trigeminal neuropathy (PTTN) is a sensory abnormality caused by injury to the trigeminal nerve during orofacial surgery. However, existing analgesics are ineffective against PTTN. Abnormal microglial activation in the caudal part of the spinal trigeminal nucleus caudal part (Sp5C), where the central [...] Read more.
Post-traumatic trigeminal neuropathy (PTTN) is a sensory abnormality caused by injury to the trigeminal nerve during orofacial surgery. However, existing analgesics are ineffective against PTTN. Abnormal microglial activation in the caudal part of the spinal trigeminal nucleus caudal part (Sp5C), where the central trigeminal nerve terminals reside, plays an important role in PTTN pathogenesis. Therefore, regulating microglial activity in Sp5C appears to be an important approach to controlling pain in PTTN. Cannabinoid receptor 2 (CB2) is expressed in immune cells including microglia, and its activation has anti-inflammatory effects. The current study demonstrates that the repeated intranasal administration of CB2 agonist HU-308 ameliorates the infraorbital nerve cut (IONC)-induced hyperresponsiveness to acetone (cutaneous cooling). The therapeutic efficacy of oral HU-308 was found to be less pronounced in alleviating cold hypersensitivity in IONC mice compared to intranasal administration, indicating the potential advantages of the intranasal route. Furthermore, repeated intranasal administration of HU-308 suppressed the activation of Sp5C microglia in IONC mice. Additionally, pretreatment with the CB2 antagonist, SR 144528, significantly blocked the anti-nociceptive effect of repeated intranasal administration of HU-308 on cold hypersensitization in IONC mice. These data suggest that the continuous stimulation of CB2 ameliorates PTTN-induced pain via the inhibition of microglial activation. Thus, CB2 agonists are potential candidates for novel therapeutic agents against PTTN. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

15 pages, 626 KiB  
Article
Optimization of Microwave-Assisted Organosolv Cellulose Recovery from Olive-Tree Pruning with Three Different Solvents
by Soledad Mateo, Giacomo Fabbrizi, M. Renee Chapeta and Alberto J. Moya
Appl. Sci. 2024, 14(22), 10670; https://doi.org/10.3390/app142210670 - 19 Nov 2024
Cited by 1 | Viewed by 1072
Abstract
Research studies for cellulose recovery from lignocellulosic materials are essential in order to propose sustainable alternatives to harness residual biomasses, solving problems caused by their abundance and inadequate use. In this study, olive-tree pruning biomass has been subjected to different pretreatments with different [...] Read more.
Research studies for cellulose recovery from lignocellulosic materials are essential in order to propose sustainable alternatives to harness residual biomasses, solving problems caused by their abundance and inadequate use. In this study, olive-tree pruning biomass has been subjected to different pretreatments with different organosolvents (acetone, ethanol, and γ-valerolactone) with microwave radiation assistance. The effect of operating parameters has been studied, considering specific ranges of variables values according to each experimental design but, in any case, located in the ranges of 33–67% (chemical compound concentration), 130–170 °C (temperature), 5–30 min (reaction time), and 1/20–1/5 (solid/liquid ratio, s/L). Based on the R2 and R2adj values (mostly above 0.97), the experimental data were adequately adjusted to four selected response variables: post-solids cellulose and lignin content apart from removal percentages of both structural components. The optimization process resulted in post-treatment solids with meaningful cellulose yields (higher than 84.7%) and reduced lignin content (lower than 4.2%). The best results were obtained using 66.5% acetone (155 °C, 8.4 min and s/L = 1/19), involving greater material deconstruction, a high percentage of delignification (96.7%), not very significant cellulose loss (29.4%), and a post-treatment solid consisting almost exclusively of cellulose (≈99%). Full article
(This article belongs to the Special Issue Resource Utilization of Agricultural Wastes)
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation
by Piotr Kowalski, Natalia Hermann, Dagmara Kroll, Mariusz Belka, Tomasz Bączek and Ilona Olędzka
Int. J. Mol. Sci. 2024, 25(22), 12227; https://doi.org/10.3390/ijms252212227 - 14 Nov 2024
Viewed by 848
Abstract
The measurement of selected norepinephrine metabolites, such as 3,4-dihydroxyphenylglycol (DHPG), 3-methoxy-4-hydroxyphenylethylenglycol (MHPG), and vanillylmandelic acid (VMA), in biological matrices—including urine—is of great clinical importance for the diagnosis and monitoring of diseases. This fact has forced researchers to evaluate new analytical methodologies for their [...] Read more.
The measurement of selected norepinephrine metabolites, such as 3,4-dihydroxyphenylglycol (DHPG), 3-methoxy-4-hydroxyphenylethylenglycol (MHPG), and vanillylmandelic acid (VMA), in biological matrices—including urine—is of great clinical importance for the diagnosis and monitoring of diseases. This fact has forced researchers to evaluate new analytical methodologies for their isolation and preconcentration from biological samples. In this study, the three most popular extraction techniques—liquid-liquid extraction (LLE), solid-phase extraction (SPE), and a new 3D-printed system for dispersive solid-phase extraction (3D-DSPE)—were investigated. Micellar electrokinetic chromatography (MEKC) with a diode array detector (DAD) at 200 nm wavelength was applied to the separation of analytes, allowing for the assessment of the extraction efficiency (R) and enrichment factor (EF) for the tested extraction types. The separation buffer (BGE) consisted of 5 mM sodium tetraborate decahydrate, 50 mM SDS, 15% (v/v) MeOH, 150 mM boric acid, and 1 mM of 1-hexyl-3-methylimidazolium chloride (the apparent pH of the BGE equaled 7.3). The EF for each extraction procedure was calculated with respect to standard mixtures of the analytes at the same concentration levels. The 3D-DSPE procedure, using DVB sorbent and acetone as the desorption solvent, proved to be the most effective approach for the simultaneous extraction and determination of the chosen compounds, achieving over 3-fold signal amplification for DHPG and MHPG and over 2-fold for VMA. Moreover, all extraction protocols used for the selected norepinephrine metabolites were estimated and discussed. It was also confirmed that the 3D-DSPE-MEKC approach could be considered an effective tool for sample pretreatment and separation of chosen endogenous analytes in urine samples. Full article
Show Figures

Figure 1

13 pages, 1477 KiB  
Article
In Vitro Potential of Antioxidant Extracts from Gracilaria gracilis Cultivated in Integrated Multi-Trophic Aquaculture (IMTA) for Marine Biobased Sector
by Simona Manuguerra, Rosaria Arena, Eleonora Curcuraci, Giuseppe Renda, Maxime Rannou, Claire Hellio, Concetta Maria Messina and Andrea Santulli
Water 2024, 16(18), 2667; https://doi.org/10.3390/w16182667 - 19 Sep 2024
Cited by 1 | Viewed by 1511
Abstract
This study aimed to evaluate the antioxidant activity of bioactive compounds extracted from Gracilaria gracilis cultivated in an integrated multi-trophic aquaculture (IMTA) system by different extraction solvents and to investigate the potential capacity of the extracts in cellular systems against environmental pollutants. The [...] Read more.
This study aimed to evaluate the antioxidant activity of bioactive compounds extracted from Gracilaria gracilis cultivated in an integrated multi-trophic aquaculture (IMTA) system by different extraction solvents and to investigate the potential capacity of the extracts in cellular systems against environmental pollutants. The global yields, total polyphenol contents, and antioxidant activity were assessed on G. gracilis by DPPH radical scavenging activity, comparing the antioxidant extraction efficiency of the different solvents (ethanol 80%, acetone 70%, N-hexane, and water). Ethanol extract, granted by the highest extractive yield and antioxidant capacity, was tested in vitro in the Sparus aurata fibroblast (SAF-1) cell line to evaluate its protective role against oxidative stress induced by the chemical flame retardant 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). The results demonstrate that the cells pretreated with G. gracilis extract were protected against oxidative stress and had improved cell viability, cellular antioxidant defense system, and cell cycle control, as demonstrated by the gene expression on some biomarkers related to the cell cycle (p53) and oxidative stress (nrf2, sod, and cat). These results confirm that bioactive compounds obtained from seaweeds cultivated in IMTAs could contribute to producing high-value ingredients that are able to counteract environmental stressors, for the growth of the marine biobased industrial sector and the expansion of new value chains. Full article
Show Figures

Figure 1

21 pages, 2810 KiB  
Article
Pretreatment of Vine Shoot Biomass by Choline Chloride-Based Deep Eutectic Solvents to Promote Biomass Fractionation and Enhance Sugar Production
by Raquel Cañadas, Aleta Duque, Alberto Bahíllo, Raquel Iglesias and Paloma Manzanares
Bioengineering 2024, 11(9), 935; https://doi.org/10.3390/bioengineering11090935 - 18 Sep 2024
Cited by 4 | Viewed by 2567
Abstract
Vine shoots hold promise as a biomass source for fermentable sugars with efficient fractionation and conversion processes. The study explores vine shoots as a biomass source for fermentable sugars through pretreatment with two deep eutectic solvents mixtures: choline chloride:lactic acid 1:5 (ChCl:LA) and [...] Read more.
Vine shoots hold promise as a biomass source for fermentable sugars with efficient fractionation and conversion processes. The study explores vine shoots as a biomass source for fermentable sugars through pretreatment with two deep eutectic solvents mixtures: choline chloride:lactic acid 1:5 (ChCl:LA) and choline chloride:ethylene glycol 1:2 (ChCl:EG). Pretreatment conditions, such as temperature/time, solid/liquid ratio, and biomass particle size, were studied. Chemical composition, recovery yields, delignification extent, and carbohydrate conversion were evaluated, including the influence of washing solvents. Temperature and particle size notably affected hemicellulose and lignin dissolution, especially with ChCl:LA. Pretreatment yielded enriched cellulose substrates, with high carbohydrate conversion rates up to 75.2% for cellulose and 99.9% for xylan with ChCl:LA, and 54.6% for cellulose and 60.2% for xylan with ChCl:EG. A 50% acetone/water mixture increased the delignification ratios to 31.5%. The results underscore the potential of this pretreatment for vine shoot fractionation, particularly at 30% solid load, while acknowledging the need for further process enhancement. Full article
(This article belongs to the Special Issue From Residues to Bio-Based Products through Bioprocess Engineering)
Show Figures

Graphical abstract

14 pages, 2728 KiB  
Article
Organophosphate Detection in Animal-Derived Foods Using a Modified Quick, Easy, Cheap, Effective, Rugged, and Safe Method with Liquid Chromatography–Mass Spectrometry
by Byung-Joon Kim, Seung-Hyun Yang and Hoon Choi
Foods 2024, 13(16), 2642; https://doi.org/10.3390/foods13162642 - 22 Aug 2024
Viewed by 1738
Abstract
Organophosphates are widely used in the livestock industry. In this study, we developed a method for detecting 27 organophosphate insecticides in animal-derived foods, including beef, pork, chicken, milk, and eggs, using liquid chromatography–tandem mass spectrometry. A modified QuEChERS method was optimized for sample [...] Read more.
Organophosphates are widely used in the livestock industry. In this study, we developed a method for detecting 27 organophosphate insecticides in animal-derived foods, including beef, pork, chicken, milk, and eggs, using liquid chromatography–tandem mass spectrometry. A modified QuEChERS method was optimized for sample pretreatment. A mixture of acetonitrile and acetone was used as the extraction solvent, and MgSO4 and NaCl were used as salts. Among the five different dispersive solid-phase extraction systems, MgSO4, primary secondary amines, and C18 were selected for purification because they had the highest recovery rates and least matrix effects. The matrix-dependent limit of quantitation was 0.0005–0.005 mg/kg, and the correlation coefficient of the matrix-matched calibration curve was >0.99, which was acceptable for quantifying residues below 0.01 mg/kg—the default maximum residue limit in a positive list system. The recovery efficiencies ranged from 71.9 to 110.5%, with standard deviations ranging from 0.2% to 12.5%, satisfying the SANTE guidelines. The established analytical method was used to monitor organophosphates in animal-derived foods obtained from a local market, and no pesticides were detected. With respect to industry standards, our proposed method is recommended for practical organophosphate detection in animal-derived foods. Full article
Show Figures

Graphical abstract

18 pages, 3181 KiB  
Article
High-Temperature Hydrothermal Extraction of Phenolic Compounds from Brewer’s Spent Grain and Malt Dust Biomass Using Natural Deep Eutectic Solvents
by Dries Bleus, Heike Blockx, Emma Gesquiere, Peter Adriaensens, Pieter Samyn, Wouter Marchal and Dries Vandamme
Molecules 2024, 29(9), 1983; https://doi.org/10.3390/molecules29091983 - 25 Apr 2024
Cited by 4 | Viewed by 2204
Abstract
Aligned with the EU Sustainable Development Goals 2030 (EU SDG2030), extensive research is dedicated to enhancing the sustainable use of biomass waste for the extraction of pharmaceutical and nutritional compounds, such as (poly-)phenolic compounds (PC). This study proposes an innovative one-step hydrothermal extraction [...] Read more.
Aligned with the EU Sustainable Development Goals 2030 (EU SDG2030), extensive research is dedicated to enhancing the sustainable use of biomass waste for the extraction of pharmaceutical and nutritional compounds, such as (poly-)phenolic compounds (PC). This study proposes an innovative one-step hydrothermal extraction (HTE) at a high temperature (120 °C), utilizing environmentally friendly acidic natural deep eutectic solvents (NADESs) to replace conventional harmful pre-treatment chemicals and organic solvents. Brewer’s spent grain (BSG) and novel malt dust (MD) biomass sources, both obtained from beer production, were characterized and studied for their potential as PC sources. HTE, paired with mild acidic malic acid/choline chloride (MA) NADES, was compared against conventional (heated and stirred maceration) and modern (microwave-assisted extraction; MAE) state-of-the-art extraction methods. The quantification of key PC in BSG and MD using liquid chromatography (HPLC) indicated that the combination of elevated temperatures and acidic NADES could provide significant improvements in PC extraction yields ranging from 251% (MD-MAC-MA: 29.3 µg/g; MD-HTE-MA: 103 µg/g) to 381% (BSG-MAC-MA: 78 µg/g; BSG-HTE-MA: 375 µg/g). The superior extraction capacity of MA NADES over non-acidic NADES (glycerol/choline chloride) and a traditional organic solvent mixture (acetone/H2O) could be attributed to in situ acid-catalysed pre-treatment facilitating the release of bound PC from lignin–hemicellulose structures. Qualitative 13C-NMR and pyro-GC-MS analysis was used to verify lignin–hemicellulose breakdown during extraction and the impact of high-temperature MA NADES extraction on the lignin–hemicellulose structure. This in situ acid NADES-catalysed high-temperature pre-treatment during PC extraction offers a potential green pre-treatment for use in cascade valorisation strategies (e.g., lignin valorisation), enabling more intensive usage of available biomass waste stream resources. Full article
(This article belongs to the Special Issue Advances in Deep Eutectic Solvents)
Show Figures

Figure 1

16 pages, 3099 KiB  
Article
Determination of 24 Trace Aromatic Substances in Rosemary Hydrosol by Dispersed Liquid–Liquid Microextraction–Gas Chromatography
by Xiaoming Zeng, Hao He, Liejiang Yuan, Haizhi Wu and Cong Zhou
Processes 2024, 12(3), 498; https://doi.org/10.3390/pr12030498 - 28 Feb 2024
Cited by 2 | Viewed by 1479
Abstract
A combined dispersed liquid–liquid microextraction (DLLME) and chromatography (GC) method was developed for the determination of 24 aromatic substances in rosemary hydrosol in this work. The pretreatment method of DLLME was optimized by carefully selecting the appropriate extraction agents, dispersants, and their respective [...] Read more.
A combined dispersed liquid–liquid microextraction (DLLME) and chromatography (GC) method was developed for the determination of 24 aromatic substances in rosemary hydrosol in this work. The pretreatment method of DLLME was optimized by carefully selecting the appropriate extraction agents, dispersants, and their respective amounts. With carbon tetrachloride as the extractant and acetone as the dispersant, the enrichment factor of DLLME is 13.3, and the 24 target substances such as eucalyptol, camphor and verbenone can be separated within 31 min and quantified by an external standard method using gas chromatography (GC). The correlation coefficient r2 of the linear regression equation is within the range of 0.9983 to 0.9991. The detection limit of the method was 0.02 mg/L, the recovery rate of the spiked solution was 76.4–118.4%, the relative standard deviation was 0.4–6.9% and the method was used to detect the semi-finished products of rosemary hydrosol and the finished rosemary hydrosol sold on the market. This method also provides a reference for the qualitative and quantitative determination of aromatic substances in other hydrosols. Full article
Show Figures

Figure 1

12 pages, 984 KiB  
Article
Characterization of Lignocellulose Nanofibril from Desilicated Rice Hull with Carboxymethylation Pretreatment
by Audrey Zahra, Seo-Kyoung Lim and Soo-Jeong Shin
Polysaccharides 2024, 5(1), 16-27; https://doi.org/10.3390/polysaccharides5010002 - 22 Jan 2024
Cited by 1 | Viewed by 1861
Abstract
Rice hulls have a high-value potential, and the lignocellulose components are underutilized compared to other biomass resources. Pretreatments such as carboxymethylation of the degree of substitutions (DS) are used to prepare lignocellulose nanofibril (LCNF) from desilicated rice hull (DSRH). High-pressure homogenization (HPH) and [...] Read more.
Rice hulls have a high-value potential, and the lignocellulose components are underutilized compared to other biomass resources. Pretreatments such as carboxymethylation of the degree of substitutions (DS) are used to prepare lignocellulose nanofibril (LCNF) from desilicated rice hull (DSRH). High-pressure homogenization (HPH) and grinding are used to process nano fibrillation. The composition of LCNF DS of desilicated rice hull was identified using 1H NMR for polysaccharide composition and DS determination, acetone and hot water extraction to evaluate extractives, and Klason lignin for lignin content. LCNF was prepared using various DS from 0.2 until DS 0.4. The results showed that LCNF DS has a more than −30 mV zeta potential, suitable for stable nanoemulsion formulations. The particle size of LCNF DS decreases with an increasing carboxyl content in the hydrogel and an increasing number of passes through grinding and high-pressure homogenization, of which LCNF DS 0.4 had the smallest width and length. Mechanical processes further reduced the size. Full article
(This article belongs to the Topic Polymers from Renewable Resources, 2nd Volume)
Show Figures

Figure 1

23 pages, 8246 KiB  
Article
A Quantitative Re-Assessment of Microencapsulation in (Pre-Treated) Yeast
by Giulia Coradello, Chiara Setti, Roberto Donno, Matilde Ghibaudi, Federico Catalano and Nicola Tirelli
Molecules 2024, 29(2), 539; https://doi.org/10.3390/molecules29020539 - 22 Jan 2024
Viewed by 2032
Abstract
Most hydrophobes easily diffuse into yeast cells, where they experience reduced evaporation and protection from oxidation, thus allowing inherently biocompatible encapsulation processes. Despite a long-standing industrial interest, the effect of parameters such as how is yeast pre-treated (extraction with ethanol, plasmolysis with hypertonic [...] Read more.
Most hydrophobes easily diffuse into yeast cells, where they experience reduced evaporation and protection from oxidation, thus allowing inherently biocompatible encapsulation processes. Despite a long-standing industrial interest, the effect of parameters such as how is yeast pre-treated (extraction with ethanol, plasmolysis with hypertonic NaCl, depletion to cell walls), the polarity of the hydrophobes and the process conditions are still not fully understood. Here, we have developed thorough analytical protocols to assess how the effects of the above on S. cerevisiae’s morphology, permeability, and encapsulation efficiency, using three differently polar hydrophobes (linalool, 1,6-dihydrocarvone, limonene) and three separate processes (hydrophobes as pure ‘oils’, water dispersions, or acetone solutions). The harsher the pre-treatment (depleted > plasmolyzed/extracted > untreated cells), the easier the diffusion into yeast became, and the lower both encapsulation efficiency and protection from evaporation, possibly due to denaturation/removal of lipid-associated (membrane) proteins. More hydrophobic terpenes performed worst in encapsulation as pure ‘oils’ or in water dispersion, but much less of a difference existed in acetone. This indicates the specific advantage of solvents/dispersants for ‘difficult’ compounds, which was confirmed by principal component analysis; furthering this concept, we have used combinations of hydrophobes (e.g., linalool and α-tocopherol), with one acting as solvent/enhancer for the other. Our results thus indicate advantages in using untreated yeast and—if necessary—processes based on solvents/secondary hydrophobes. Full article
Show Figures

Graphical abstract

15 pages, 4346 KiB  
Article
Unconventional Extraction Methods of Oleaginous Yeast Cell Pretreatment and Disruption
by Agata Fabiszewska, Anna Pakulska, Bartłomiej Zieniuk, Katarzyna Wierzchowska, Karina Jasińska, Jolanta Małajowicz and Dorota Nowak
Appl. Sci. 2023, 13(24), 13135; https://doi.org/10.3390/app132413135 - 10 Dec 2023
Cited by 3 | Viewed by 2755
Abstract
Extraction is one of the most commonly used methods for obtaining and purifying chemical compounds for commercial usage. The aim of this study was to evaluate the effect of unconventional permeabilization and cell disruption methods on the yield of lipid extraction from cells [...] Read more.
Extraction is one of the most commonly used methods for obtaining and purifying chemical compounds for commercial usage. The aim of this study was to evaluate the effect of unconventional permeabilization and cell disruption methods on the yield of lipid extraction from cells of the oleaginous yeast Yarrowia lipolytica. Batch cultures in a medium with molasses and waste post-frying oil were carried out. The biomass was subjected to pulsed electric field (PEF), high-pressure processing (HPP), ultrasounds (US), and several conventional processing techniques with chemical and mechanical agents (glass beads, acetone, Triton and Tween surfactants). The effectiveness of the applied methods, either on cell permeabilization or cell disruption, was investigated by analyzing the oil and total protein extraction yield and oil leaching efficiency, as well as by using microscope images. The PEF and US treatments proved to be effective permeabilization methods as a step of sample pretreatment for extraction. These unconventional physical methods could efficiently increase intracellular lipid extraction yield in solvent applications. Full article
Show Figures

Figure 1

Back to TopTop