Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Yorkie

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10807 KiB  
Article
A Tumor-Specific Molecular Network Promotes Tumor Growth in Drosophila by Enforcing a Jun N-Terminal Kinase–Yorkie Feedforward Loop
by Indrayani Waghmare, Karishma Gangwani, Arushi Rai, Amit Singh and Madhuri Kango-Singh
Cancers 2024, 16(9), 1768; https://doi.org/10.3390/cancers16091768 - 2 May 2024
Viewed by 2230
Abstract
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase [...] Read more.
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK) and sustained proliferative signaling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumor growth through pro-tumor signaling and intercellular interactions like cell competition. However, little is known about the signals that converge onto JNK and Yki in tumor cells and enable tumor cells to achieve the hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis (RasV12,scrib) in Drosophila, we show that RasV12,scrib tumor cells grow through the activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK, and Yki. We show that RasV12,scrib cells show increased Wg, Dronc, JNK, and Yki signaling, and all these signals are required for the growth of RasV12,scrib tumors. We report that Wg and Dronc converge onto a JNK–Yki self-reinforcing positive feedback signal-amplification loop that promotes tumor growth. We found that the Wg–Dronc–Yki–JNK molecular network is specifically activated in polarity-impaired tumor cells and not in normal cells, in which apical-basal polarity remains intact. Our findings suggest that the identification of molecular networks may provide significant insights into the key biologically meaningful changes in signaling pathways and paradoxical signals that promote tumorigenesis. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

27 pages, 2383 KiB  
Review
Nuclear Import and Export of YAP and TAZ
by Michael Kofler and András Kapus
Cancers 2023, 15(20), 4956; https://doi.org/10.3390/cancers15204956 - 12 Oct 2023
Cited by 15 | Viewed by 3992
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they [...] Read more.
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology. Full article
Show Figures

Figure 1

20 pages, 964 KiB  
Article
Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model
by Denis A. Golubev, Nadezhda V. Zemskaya, Anastasia A. Gorbunova, Daria V. Kukuman, Alexey Moskalev and Mikhail V. Shaposhnikov
Int. J. Mol. Sci. 2023, 24(6), 6006; https://doi.org/10.3390/ijms24066006 - 22 Mar 2023
Cited by 2 | Viewed by 3018
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of [...] Read more.
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 2508 KiB  
Article
The Hippo–Yki Signaling Pathway Positively Regulates Immune Response against Vibrio Infection in Shrimp
by Linwei Yang, Zi-Ang Wang, Ran Geng, Shengwen Niu, Hongliang Zuo, Zhixun Guo, Shaoping Weng, Jianguo He and Xiaopeng Xu
Int. J. Mol. Sci. 2022, 23(19), 11897; https://doi.org/10.3390/ijms231911897 - 7 Oct 2022
Cited by 11 | Viewed by 2296
Abstract
In the Hippo pathway, activation of Hippo and Warts (Wts) kinases results in the phosphorylation of Yorkie (Yki), to prevent its nuclear translocation. Shrimp aquaculture is threatened by Vibrio genus bacteria. In this study, we examine the role of the Hippo pathway in [...] Read more.
In the Hippo pathway, activation of Hippo and Warts (Wts) kinases results in the phosphorylation of Yorkie (Yki), to prevent its nuclear translocation. Shrimp aquaculture is threatened by Vibrio genus bacteria. In this study, we examine the role of the Hippo pathway in immune defense against Vibrio parahaemolyticus in Pacific white shrimp Penaeus vannamei. We show that V. parahaemolyticus infection promotes the expression of Yki and facilitates the dephosphorylation and nuclear translocation of Yki, indicating the inhibition of Hippo signaling upon bacterial infection. There is a complex regulatory relationship between the Hippo pathway components Hippo, Wts, and Yki and the immune-related transcription factors Dorsal, Relish, and STAT. Silencing of Hippo and Wts weakened hemocyte phagocytosis, while the silencing of Yki enhanced it, suggesting a positive regulation of shrimp cellular immunity by Hippo signaling activation. In vivo silencing of Hippo and Wts decreased the survival rates of V. parahaemolyticus-infected shrimp and elevated the bacterial content in tissues, while the silencing of Yki showed the opposite results. This suggests that the activation of Hippo signaling and the inhibition of Yki enhance antibacterial immunity in shrimp. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

12 pages, 10019 KiB  
Article
Tumor-Induced Cardiac Dysfunction: A Potential Role of ROS
by Priyanka Karekar, Haley N. Jensen, Kathryn L. G. Russart, Devasena Ponnalagu, Sarah Seeley, Shridhar Sanghvi, Sakima A. Smith, Leah M. Pyter, Harpreet Singh and Shubha Gururaja Rao
Antioxidants 2021, 10(8), 1299; https://doi.org/10.3390/antiox10081299 - 18 Aug 2021
Cited by 9 | Viewed by 6875
Abstract
Cancer and heart diseases are the two leading causes of mortality and morbidity worldwide. Many cancer patients undergo heart-related complications resulting in high incidences of mortality. It is generally hypothesized that cardiac dysfunction in cancer patients occurs due to cardiotoxicity induced by therapeutic [...] Read more.
Cancer and heart diseases are the two leading causes of mortality and morbidity worldwide. Many cancer patients undergo heart-related complications resulting in high incidences of mortality. It is generally hypothesized that cardiac dysfunction in cancer patients occurs due to cardiotoxicity induced by therapeutic agents, used to treat cancers and/or cancer-induced cachexia. However, it is not known if localized tumors or unregulated cell growth systemically affect heart function before treatment, and/or prior to the onset of cachexia, hence, making the heart vulnerable to structural or functional abnormalities in later stages of the disease. We incorporated complementary mouse and Drosophila models to establish if tumor induction indeed causes cardiac defects even before intervention with chemotherapy or onset of cachexia. We focused on one of the key pathways involved in irregular cell growth, the Hippo–Yorkie (Yki), pathway. We used overexpression of the transcriptional co-activator of the Yki signaling pathway to induce cellular overgrowth, and show that Yki overexpression in the eye tissue of Drosophila results in compromised cardiac function. We rescue these cardiac phenotypes using antioxidant treatment, with which we conclude that the Yki induced tumorigenesis causes a systemic increase in ROS affecting cardiac function. Our results show that systemic cardiac dysfunction occurs due to abnormal cellular overgrowth or cancer elsewhere in the body; identification of specific cardiac defects associated with oncogenic pathways can facilitate the possible early diagnosis of cardiac dysfunction. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiac Disease)
Show Figures

Graphical abstract

14 pages, 2750 KiB  
Communication
Drosophila Homeodomain-Interacting Protein Kinase (Hipk) Phosphorylates the Hippo/Warts Signalling Effector Yorkie
by Eva Louise Steinmetz, Denise Nicole Dewald and Uwe Walldorf
Int. J. Mol. Sci. 2021, 22(4), 1862; https://doi.org/10.3390/ijms22041862 - 13 Feb 2021
Cited by 5 | Viewed by 2750
Abstract
Developmental growth and patterning are regulated by an interconnected signalling network of several pathways. In Drosophila, the Warts (Wts) kinase, a component of the Hippo signalling pathway, plays an essential role in regulating transcription and growth by phosphorylating its substrate Yorkie (Yki). [...] Read more.
Developmental growth and patterning are regulated by an interconnected signalling network of several pathways. In Drosophila, the Warts (Wts) kinase, a component of the Hippo signalling pathway, plays an essential role in regulating transcription and growth by phosphorylating its substrate Yorkie (Yki). The phosphorylation of Yki critically influences its localisation and activity as a transcriptional coactivator. In this study, we identified the homeodomain-interacting protein kinase (Hipk) as another kinase that phosphorylates Yki and mapped several sites of Yki phosphorylated by Hipk, using in vitro analysis: Ser168, Ser169/Ser172 and Ser255. These sites might provide auxiliary input for Yki regulation in vivo, as transgenic flies with mutations in these show prominent phenotypes; Hipk, therefore, represents an additional upstream regulator of Yki that works in concert with Wts. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2.0)
Show Figures

Figure 1

20 pages, 2367 KiB  
Article
Mud Loss Restricts Yki-Dependent Hyperplasia in Drosophila Epithelia
by Amalia S. Parra and Christopher A. Johnston
J. Dev. Biol. 2020, 8(4), 34; https://doi.org/10.3390/jdb8040034 - 13 Dec 2020
Cited by 2 | Viewed by 4221
Abstract
Tissue development demands precise control of cell proliferation and organization, which is achieved through multiple conserved signaling pathways and protein complexes in multicellular animals. Epithelia are a ubiquitous tissue type that provide diverse functions including physical protection, barrier formation, chemical exchange, and secretory [...] Read more.
Tissue development demands precise control of cell proliferation and organization, which is achieved through multiple conserved signaling pathways and protein complexes in multicellular animals. Epithelia are a ubiquitous tissue type that provide diverse functions including physical protection, barrier formation, chemical exchange, and secretory activity. However, epithelial cells are also a common driver of tumorigenesis; thus, understanding the molecular mechanisms that control their growth dynamics is important in understanding not only developmental mechanisms but also disease. One prominent pathway that regulates epithelial growth is the conserved Hippo/Warts/Yorkie network. Hippo/Warts inactivation, or activating mutations in Yorkie that prevent its phosphorylation (e.g., YkiS168A), drive hyperplastic tissue growth. We recently reported that loss of Mushroom body defect (Mud), a microtubule-associated protein that contributes to mitotic spindle function, restricts YkiS168A-mediated growth in Drosophila imaginal wing disc epithelia. Here we show that Mud loss alters cell cycle progression and triggers apoptosis with accompanying Jun kinase (JNK) activation in YkiS168A-expressing discs. To identify additional molecular insights, we performed RNAseq and differential gene expression profiling. This analysis revealed that Mud knockdown in YkiS168A-expressing discs resulted in a significant downregulation in expression of core basement membrane (BM) and extracellular matrix (ECM) genes, including the type IV collagen gene viking. Furthermore, we found that YkiS168A-expressing discs accumulated increased collagen protein, which was reduced following Mud knockdown. Our results suggest that ECM/BM remodeling can limit untoward growth initiated by an important driver of tumor growth and highlight a potential regulatory link with cytoskeleton-associated genes. Full article
(This article belongs to the Special Issue 2020 Feature Papers by JDB’s Editorial Board Members)
Show Figures

Figure 1

12 pages, 1104 KiB  
Review
The Molecular Network of YAP/Yorkie at the Cell Cortex and their Role in Ocular Morphogenesis
by Kassiani Skouloudaki, Dimitrios K. Papadopoulos and Toby W. Hurd
Int. J. Mol. Sci. 2020, 21(22), 8804; https://doi.org/10.3390/ijms21228804 - 20 Nov 2020
Cited by 1 | Viewed by 3215
Abstract
During development, the precise control of tissue morphogenesis requires changes in the cell number, size, shape, position, and gene expression, which are driven by both chemical and mechanical cues from the surrounding microenvironment. Such physical and architectural features inform cells about their proliferative [...] Read more.
During development, the precise control of tissue morphogenesis requires changes in the cell number, size, shape, position, and gene expression, which are driven by both chemical and mechanical cues from the surrounding microenvironment. Such physical and architectural features inform cells about their proliferative and migratory capacity, enabling the formation and maintenance of complex tissue architecture. In polarised epithelia, the apical cell cortex, a thin actomyosin network that lies directly underneath the apical plasma membrane, functions as a platform to facilitate signal transmission between the external environment and downstream signalling pathways. One such signalling pathway culminates in the regulation of YES-associated protein (YAP) and TAZ transcriptional co-activators and their sole Drosophila homolog, Yorkie, to drive proliferation and differentiation. Recent studies have demonstrated that YAP/Yorkie exhibit a distinct function at the apical cell cortex. Here, we review recent efforts to understand the mechanisms that regulate YAP/Yki at the apical cell cortex of epithelial cells and how normal and disturbed YAP–actomyosin networks are involved in eye development and disease. Full article
Show Figures

Figure 1

21 pages, 10591 KiB  
Article
Rounding up the Usual Suspects: Assessing Yorkie, AP-1, and Stat Coactivation in Tumorigenesis
by Fisun Hamaratoglu and Mardelle Atkins
Int. J. Mol. Sci. 2020, 21(13), 4580; https://doi.org/10.3390/ijms21134580 - 27 Jun 2020
Cited by 10 | Viewed by 3984
Abstract
Can hyperactivation of a few key signaling effectors be the underlying reason for the majority of epithelial cancers despite different driver mutations? Here, to address this question, we use the Drosophila model, which allows analysis of gene expression from tumors with known initiating [...] Read more.
Can hyperactivation of a few key signaling effectors be the underlying reason for the majority of epithelial cancers despite different driver mutations? Here, to address this question, we use the Drosophila model, which allows analysis of gene expression from tumors with known initiating mutations. Furthermore, its simplified signaling pathways have numerous well characterized targets we can use as pathway readouts. In Drosophila tumor models, changes in the activities of three pathways, Jun N-terminal Kinase (JNK), Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT), and Hippo, mediated by AP-1 factors, Stat92E, and Yorkie, are reported frequently. We hypothesized this may indicate that these three pathways are commonly deregulated in tumors. To assess this, we mined the available transcriptomic data and evaluated the activity levels of eight pathways in various tumor models. Indeed, at least two out of our three suspects contribute to tumor development in all Drosophila cancer models assessed, despite different initiating mutations or tissues of origin. Surprisingly, we found that Notch signaling is also globally activated in all models examined. We propose that these four pathways, JNK, JAK/STAT, Hippo, and Notch, are paid special attention and assayed for systematically in existing and newly developed models. Full article
(This article belongs to the Special Issue Basic and Translational Models of Cooperative Oncogenesis)
Show Figures

Figure 1

15 pages, 5310 KiB  
Article
Transcriptional Coactivator TAZ Negatively Regulates Tumor Suppressor p53 Activity and Cellular Senescence
by Chiharu Miyajima, Yuki Kawarada, Yasumichi Inoue, Chiaki Suzuki, Kana Mitamura, Daisuke Morishita, Nobumichi Ohoka, Takeshi Imamura and Hidetoshi Hayashi
Cells 2020, 9(1), 171; https://doi.org/10.3390/cells9010171 - 9 Jan 2020
Cited by 19 | Viewed by 5381
Abstract
Transcriptional coactivator with a PDZ-binding motif (TAZ) is one of the mammalian orthologs of Drosophila Yorkie, a transcriptional coactivator of the Hippo pathway. TAZ has been suggested to function as a regulator that modulates the expression of cell proliferation and anti-apoptotic genes in [...] Read more.
Transcriptional coactivator with a PDZ-binding motif (TAZ) is one of the mammalian orthologs of Drosophila Yorkie, a transcriptional coactivator of the Hippo pathway. TAZ has been suggested to function as a regulator that modulates the expression of cell proliferation and anti-apoptotic genes in order to stimulate cell proliferation. TAZ has also been associated with a poor prognosis in several cancers, including breast cancer. However, the physiological role of TAZ in tumorigenesis remains unclear. We herein demonstrated that TAZ negatively regulated the activity of the tumor suppressor p53. The overexpression of TAZ down-regulated p53 transcriptional activity and its downstream gene expression. In contrast, TAZ knockdown up-regulated p21 expression induced by p53 activation. Regarding the underlying mechanism, TAZ inhibited the interaction between p53 and p300 and suppressed the p300-mediated acetylation of p53. Furthermore, TAZ knockdown induced cellular senescence in a p53-dependent manner. These results suggest that TAZ negatively regulates the tumor suppressor functions of p53 and attenuates p53-mediated cellular senescence. Full article
(This article belongs to the Special Issue Role of p53 in Cell Death and Cancers)
Show Figures

Figure 1

11 pages, 4857 KiB  
Article
Usp10 Modulates the Hippo Pathway by Deubiquitinating and Stabilizing the Transcriptional Coactivator Yorkie
by Yang Gao, Xiaoting Zhang, Lijuan Xiao, Chaojun Zhai, Tao Yi, Guiping Wang, Enlin Wang, Xiaohui Ji, Liangchang Hu, Guangshuang Shen and Shian Wu
Int. J. Mol. Sci. 2019, 20(23), 6013; https://doi.org/10.3390/ijms20236013 - 29 Nov 2019
Cited by 7 | Viewed by 4227
Abstract
The Hippo signaling pathway is an evolutionarily conserved regulator that plays important roles in organ size control, homeostasis, and tumorigenesis. As the key effector of the Hippo pathway, Yorkie (Yki) binds to transcription factor Scalloped (Sd) and promotes the expression of target genes, [...] Read more.
The Hippo signaling pathway is an evolutionarily conserved regulator that plays important roles in organ size control, homeostasis, and tumorigenesis. As the key effector of the Hippo pathway, Yorkie (Yki) binds to transcription factor Scalloped (Sd) and promotes the expression of target genes, leading to cell proliferation and inhibition of apoptosis. Thus, it is of great significance to understand the regulatory mechanism for Yki protein turnover. Here, we provide evidence that the deubiquitinating enzyme ubiquitin-specific protease 10 (Usp10) binds Yki to counteract Yki ubiquitination and stabilize Yki protein in Drosophila S2 cells. The results in Drosophila wing discs indicate that silence of Usp10 decreases the transcription of target genes of the Hippo pathway by reducing Yki protein. In vivo functional analysis ulteriorly showed that Usp10 upregulates the Yki activity in Drosophila eyes. These findings uncover Usp10 as a novel Hippo pathway modulator and provide a new insight into the regulation of Yki protein stability and activity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop