Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (176)

Search Parameters:
Keywords = Virtual Synchronous Generator (VSG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6012 KB  
Article
Refined Fuzzy-Control-Based VSG Control Strategy for Flexible Interconnection Devices in Distribution Grid
by Xiaochun Mou, Wu Chen and Xin Li
Electronics 2025, 14(21), 4310; https://doi.org/10.3390/electronics14214310 - 1 Nov 2025
Viewed by 450
Abstract
In this paper, virtual synchronous generator (VSG) technology is innovatively introduced into the distributor-unified power flow controller (D-UPFC) control to simulate the power generation characteristics of the synchronous generator. Concepts such as inertia and damping in the synchronous generator are introduced into power [...] Read more.
In this paper, virtual synchronous generator (VSG) technology is innovatively introduced into the distributor-unified power flow controller (D-UPFC) control to simulate the power generation characteristics of the synchronous generator. Concepts such as inertia and damping in the synchronous generator are introduced into power electronic equipment to provide voltage and frequency support for the system. The VSG control system, which specifically includes the virtual governor, the virtual excitation regulator, and the construction of the VSG model, is designed first. Then, the overall control combining the VSG and the series converter in D-UPFC is discussed. Finally, based on the influence of moment of inertia and damping coefficient on the response parameters, a VSG parameter adaptive control strategy based on refined fuzzy control was proposed. The simulation shows that this strategy can effectively reduce the active overshot and frequency deviation in the dynamic process of the system, eliminate secondary oscillations, and improve the dynamic response capability. Full article
Show Figures

Figure 1

23 pages, 4110 KB  
Article
RBF Neural Network-Enhanced Adaptive Sliding Mode Control for VSG Systems with Multi-Parameter Optimization
by Jian Sun, Chuangxin Chen and Huakun Wei
Electronics 2025, 14(21), 4309; https://doi.org/10.3390/electronics14214309 - 31 Oct 2025
Viewed by 334
Abstract
Virtual synchronous generator (VSG) simulates the dynamic characteristics of synchronous generator, offering significant advantages in flexibly adjusting virtual inertia and damping parameters. However, their dynamic stability is susceptible to constraints such as control parameter design, grid disturbances, and the intermittent nature of distributed [...] Read more.
Virtual synchronous generator (VSG) simulates the dynamic characteristics of synchronous generator, offering significant advantages in flexibly adjusting virtual inertia and damping parameters. However, their dynamic stability is susceptible to constraints such as control parameter design, grid disturbances, and the intermittent nature of distributed power sources. This study addresses the degradation of transient performance in traditional sliding mode control for VSG, caused by insufficient multi-parameter cooperative adaptation. It proposes an adaptive sliding mode control strategy based on radial basis function (RBF) neural networks. Through theoretical analysis of the influence mechanism of virtual inertia and damping coefficient perturbations on system stability, the RBF neural network achieves dynamic parameter decoupling and nonlinear mapping. Combined with an integral-type sliding surface to design a weight-adaptive convergence law, it effectively avoids local optima and ensures global stability. This strategy not only enables multi-parameter cooperative adaptive regulation of frequency fluctuations but also significantly enhances the system’s robustness under parameter perturbations. Simulation results demonstrate that compared to traditional control methods, the proposed strategy exhibits significant advantages in dynamic response speed and overshoot suppression. Full article
Show Figures

Figure 1

17 pages, 2504 KB  
Article
Adaptive Control of Inertia and Damping in Grid-Forming Photovoltaic-Storage System
by Zicheng Zhao, Haijiang Li, Linjun Shi, Feng Wu, Minshen Lin and Hao Fu
Sustainability 2025, 17(21), 9540; https://doi.org/10.3390/su17219540 - 27 Oct 2025
Viewed by 399
Abstract
The increasing penetration of renewable energy, such as photovoltaic generation, makes it essential to enhance power system dynamic performance through improved grid-forming control strategies. In the grid-forming control system, the virtual synchronous generator control (VSG) is currently widely used. However, the inertia (J) [...] Read more.
The increasing penetration of renewable energy, such as photovoltaic generation, makes it essential to enhance power system dynamic performance through improved grid-forming control strategies. In the grid-forming control system, the virtual synchronous generator control (VSG) is currently widely used. However, the inertia (J) and damping (D) in the traditional VSG are fixed values, which can result in large overshoots and long adjustment times when dealing with disturbances such as load switching. To address these issues, this paper proposes an adaptive virtual synchronous generator (VSG) control strategy for grid-side inverters, which is accomplished by adaptively adjusting the VSG’s inertia and damping. Firstly, we established a photovoltaic-storage VSG grid-forming system; here, the photovoltaic power is boosted through a DC-DC converter, and the energy storage is connected to the common DC bus through a bidirectional DC-DC converter. We analyzed how J and D shape the system’s output characteristics. Based on the power-angle characteristic curve, the tanh function was introduced to design the control function, and a JD collaborative adaptive control (ACL) strategy was proposed. Finally, simulation experiments were conducted under common working conditions, such as load switching and grid-side voltage disturbance, to verify the results. From the results shown, the proposed strategy can effectively improve the response speed of the system, suppress system overshoot and oscillation, and, to a certain extent, improve the dynamic performance of the system. Full article
(This article belongs to the Special Issue Advances in Sustainable Battery Energy Storage Systems)
Show Figures

Figure 1

14 pages, 2105 KB  
Article
A Unified Control Strategy Integrating VSG and LVRT for Current-Source PMSGs
by Yang Yang, Zaijun Wu, Xiangjun Quan, Junjie Xiong, Zijing Wan and Zetao Wei
Processes 2025, 13(11), 3432; https://doi.org/10.3390/pr13113432 - 25 Oct 2025
Viewed by 473
Abstract
The growing penetration of renewable energy has reduced system inertia and damping, threatening grid stability. This paper proposes a novel control strategy that seamlessly integrates virtual synchronous generator (VSG) emulation with low-voltage ride-through (LVRT) capability for direct-drive permanent magnet synchronous generators (PMSGs). The [...] Read more.
The growing penetration of renewable energy has reduced system inertia and damping, threatening grid stability. This paper proposes a novel control strategy that seamlessly integrates virtual synchronous generator (VSG) emulation with low-voltage ride-through (LVRT) capability for direct-drive permanent magnet synchronous generators (PMSGs). The unified control framework enables simultaneous inertia support during frequency disturbances and compliant reactive current injection during voltage sags—eliminating mode switching. Furthermore, the proposed strategy has been validated through both a single-machine model and actual wind farm topology. Results demonstrate that the strategy successfully achieves VSG control functionality while simultaneously meeting LVRT requirements. Full article
Show Figures

Figure 1

18 pages, 6226 KB  
Article
PSO-Based Supervisory Adaptive Controller for BESS-VSG Frequency Regulation Under High PV Penetration
by Raffaella Assogna, Lucio Ciabattoni and Gabriele Comodi
Energies 2025, 18(20), 5401; https://doi.org/10.3390/en18205401 - 14 Oct 2025
Viewed by 367
Abstract
High photovoltaic (PV) penetration challenges grid frequency stability due to reduced system inertia. Virtual Synchronous Generators (VSGs), particularly when paired with Battery Energy Storage Systems (BESSs), can mitigate this by emulating synchronous machine dynamics. This study focuses on improving frequency response during PV [...] Read more.
High photovoltaic (PV) penetration challenges grid frequency stability due to reduced system inertia. Virtual Synchronous Generators (VSGs), particularly when paired with Battery Energy Storage Systems (BESSs), can mitigate this by emulating synchronous machine dynamics. This study focuses on improving frequency response during PV power reductions through the adaptive tuning of an extensive set of VSG parameters. A double-phase Supervisory Controller is developed: in the first phase, Particle Swarm Optimization (PSO) computes multiple sets of optimal VSG parameters for various PV curtailment and load demand change scenarios; in the second phase, the system determines the most appropriate parameters based on current operating conditions to minimize frequency deviations, using the first phase as a foundation for adaptive decision making. The proposed Supervisory Controller reduced the Integral of the Absolute Error (IAE) of 151.55% in the case of a 65% irradiance drop. At 55%, the IAE decreased from 0.4605 to 0.2227, and at 25% from 0.0791 to 0.0546. In the low-disturbance scenario at a 25% drop, the IAE was maintained below 0.06. Supervisory Controller performance led to a reduced settling time and improved frequency recovery. These results demonstrate that the Supervisory Controller improves frequency regulation in both mild and severe irradiance reduction events. Full article
Show Figures

Figure 1

26 pages, 5816 KB  
Article
Disturbance-Free Switching Control Strategy for Grid-Following/Grid-Forming Modes of Energy Storage Converters
by Geling Jiang, Siyu Kan, Yuhang Li and Xiaorong Zhu
Electronics 2025, 14(19), 3963; https://doi.org/10.3390/electronics14193963 - 9 Oct 2025
Viewed by 471
Abstract
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying [...] Read more.
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying that sudden changes in current commands and angle-control misalignment are the key factors triggering oscillations in system power and voltage frequency. To overcome this, we design a virtual synchronous generator (VSG) control angle-tracking technique based on the construction of triangular functions, which effectively eliminates the influence of periodic phase-angle jumps on tracking accuracy and achieves precise pre-synchronization of the microgrid phase in GFM mode. Additionally, we employ a current-command seamless switching technique involving real-time latching and synchronization of the inner-loop current references between the two modes, ensuring continuity of control commands at the switching instant. The simulation and hardware-in-the-loop (HIL) experimental results show that the proposed strategy does not require retuning of the parameters after switching, greatly suppresses voltage and frequency fluctuations during mode transition, and achieves smooth, rapid, seamless switching between the GFL and GFM modes of the energy storage converter, thereby improving the stability of microgrid operation. Full article
Show Figures

Figure 1

29 pages, 9652 KB  
Article
Overcurrent Limiting Strategy for Grid-Forming Inverters Based on Current-Controlled VSG
by Alisher Askarov, Pavel Radko, Yuly Bay, Ivan Gusarov, Vagiz Kabirov, Pavel Ilyushin and Aleksey Suvorov
Mathematics 2025, 13(19), 3207; https://doi.org/10.3390/math13193207 - 7 Oct 2025
Viewed by 1001
Abstract
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based [...] Read more.
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based on a virtual synchronous generator (VSG). However, at present, the problem of VSG operation under abnormal conditions associated with an increase in output current remains unsolved. Existing current saturation algorithms (CSAs) lead to the degradation of grid-forming properties during overcurrent limiting or reduce the possible range of current output. In this regard, this paper proposes to use the structure of modified current-controlled VSG (CC-VSG) instead of traditional voltage-controlled VSG. A current vector amplitude limiter is used to limit the output current in the CC-VSG structure. At the same time, the angle of the current reference vector continues to be regulated based on the emerging operating conditions due to the voltage feedback in the used VSG equations. The presented simulation results have shown that it was possible to achieve a wide operating range for the current phase from 0° to 180° in comparison with a traditional VSG algorithm. At the same time, the properties of the grid-forming inverter, such as power synchronization without phase-locked loop controller, voltage, and frequency control, are preserved. In addition, in order to avoid saturation of the voltage controller, it is proposed to use a simple algorithm of blocking and switching the reference signal from the setpoint to the current voltage level. Due to this structure, it was possible to prevent saturation of integrators in the control loops and to provide a guaranteed exit from the limiting mode. The results of adding this structure showed a five-second reduction in the overvoltage that occurs when it is absent. A comparison with conditional integration also showed that it prevented lock-up in the limiting mode. The results of experimental verification of the developed prototype of the inverter with CC-VSG control and CSA are also given, including a comparison with the serial model of the hybrid inverter. The results obtained showed that the developed algorithm excludes both the dead time and the load current loss when the external grid is disconnected. In addition, there is no tripping during overload, unlike a hybrid inverter. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

15 pages, 2883 KB  
Article
Oscillation Propagation Analysis of Grid-Connected Converter System with New eVSG Control Patterns
by Hong Zhang, Bin Xu, Jinzhong Li, Yuguang Xie and Wei Ma
Electronics 2025, 14(19), 3850; https://doi.org/10.3390/electronics14193850 - 28 Sep 2025
Viewed by 243
Abstract
The virtual synchronous generator (VSG) technique plays a crucial role in power systems with high penetration of power electronics, as it can provide virtual inertia and damping performance by emulating the swing characteristics of a synchronous generator (SG). However, the VSG faces challenges [...] Read more.
The virtual synchronous generator (VSG) technique plays a crucial role in power systems with high penetration of power electronics, as it can provide virtual inertia and damping performance by emulating the swing characteristics of a synchronous generator (SG). However, the VSG faces challenges due to its inherent limitations, such as vulnerability to disturbances and instability in strong grid conditions. To address these issues, this article proposes an exchanged VSG (eVSG) control strategy. In this approach, the phase information (θ) is derived from reactive power (Q), while the voltage information (E) is derived from active power (P). Furthermore, a Magnitude-Phase Motion Equation (MPME) is introduced to analyze the eVSG system from a physical perspective. Additionally, this article is the first to illustrate the oscillation propagation effect between P and frequency (f) in both VSG and eVSG systems. Finally, the advantages of the eVSG strategy are comprehensively demonstrated through three aspects: (1) comparing the motion trajectory of f using the MPME model, (2) evaluating the oscillation propagation effect between VSG and eVSG systems, and (3) conducting simulations and experiments. Full article
Show Figures

Figure 1

20 pages, 4287 KB  
Article
Transient Stability Enhancement Method for VSGs Based on Power Angle Deviation for Reactive Power Control Loop Modification
by Guanlong Jia, Jingru Shi, Xueying Wang, Feng Niu and Xiaoxue Wang
Electronics 2025, 14(19), 3837; https://doi.org/10.3390/electronics14193837 - 27 Sep 2025
Viewed by 272
Abstract
Virtual synchronous generators (VSGs) simulate the operating characteristics of conventional synchronous generators to provide inertia, voltage and frequency support for new-type power systems dominated by power electronics. However, in the event of grid faults, VSGs inevitably experience transient angle instability, which leads to [...] Read more.
Virtual synchronous generators (VSGs) simulate the operating characteristics of conventional synchronous generators to provide inertia, voltage and frequency support for new-type power systems dominated by power electronics. However, in the event of grid faults, VSGs inevitably experience transient angle instability, which leads to great challenges to the safe and stable operation of the power system. To address the problem of transient instability so that VSGs can continue to support the power system during a grid fault, this paper firstly analyzes the adverse effect of a reactive power control (RPC) loop on the transient stability of the system and proposes a method for adding the variation in the power angle into RPC to increase the voltage reference of a VSG during grid faults, which can solve the transient instability problem under both equilibrium point existence and nonexistence by increasing the active power output of the VSG. The effect of the additional coefficient on the transient characteristics of the system is then analyzed using a small-signal model, and it is found that this method also enhances the frequency stability of the system. Finally, the feasibility of the proposed method and the correctness of the theoretical analysis are confirmed by a simulation platform. Full article
Show Figures

Figure 1

13 pages, 4451 KB  
Article
Inverters That Mimic a Synchronous Condenser to Improve Voltage Stability in Power System
by Yang Yang, Zaijun Wu, Xiangjun Quan, Junjie Xiong, Zijing Wan and Zetao Wei
Processes 2025, 13(9), 2927; https://doi.org/10.3390/pr13092927 - 13 Sep 2025
Viewed by 457
Abstract
The shift to renewable energy generation increases risks of frequency and voltage instability. This transition can cause significant voltage and frequency fluctuations during load changes, generation interruptions, and grid faults. One potential solution is the deployment of synchronous condensers to mitigate these issues; [...] Read more.
The shift to renewable energy generation increases risks of frequency and voltage instability. This transition can cause significant voltage and frequency fluctuations during load changes, generation interruptions, and grid faults. One potential solution is the deployment of synchronous condensers to mitigate these issues; however, this approach may also increase operational and maintenance costs. To address this limitation, this paper proposes a method called the virtual synchronous condenser (VSCon) that enables renewable energy systems such as PV-solar energy systems or wind farms to emulate the behavior of synchronous condensers. Unlike traditional VSGs with simplified models, VSCon uses the mathematical equivalent circuit of a real synchronous condenser. This enables sub-transient and inertial behavior. Voltage support improves by adjusting sub-transient reactance, and frequency support enhances by tuning inertia and damping coefficients, thereby enhancing the local voltage and frequency stability. The proposed approach has been validated through case studies, demonstrating both its effectiveness and practicality. Full article
Show Figures

Figure 1

17 pages, 2856 KB  
Article
An Adaptive Grid-Forming Control Strategy Based on Capacitor Energy State Estimation
by Xinghu Liu, Yingying Chen and Yongfeng Fu
Batteries 2025, 11(9), 337; https://doi.org/10.3390/batteries11090337 - 9 Sep 2025
Viewed by 741
Abstract
Conventional grid-forming (GFM) inverter control strategies often rely on fixed parameters and overlook the dynamic variation in energy stored in the DC link capacitor. This limitation can degrade transient performance and stability, particularly under power fluctuations and grid disturbances in renewable energy systems. [...] Read more.
Conventional grid-forming (GFM) inverter control strategies often rely on fixed parameters and overlook the dynamic variation in energy stored in the DC link capacitor. This limitation can degrade transient performance and stability, particularly under power fluctuations and grid disturbances in renewable energy systems. To address this issue, this paper proposes an adaptive GFM control method that integrates real-time estimation of the DC link capacitor energy into the control loop. A Kalman filter-based observer is designed to estimate the capacitor energy state accurately and robustly using only local voltage and current measurements. The estimated energy deviation is then used to dynamically adjust key control parameters, including the virtual inertia and droop coefficients in the virtual synchronous generator (VSG) framework. These adaptive adjustments enhance the inverter’s damping and inertial behavior according to the internal energy buffer, improving performance under variable operating conditions. Simulation results in MATLAB/Simulink R2023b demonstrate that the proposed method significantly reduces power and voltage overshoots, shortens settling time, and improves DC link voltage regulation compared to conventional fixed-parameter control. Full article
Show Figures

Figure 1

18 pages, 3242 KB  
Article
Synchronous Stability Analysis and Enhanced Control of Power Systems with Grid-Following and Grid-Forming Converters Considering Converter Distribution
by Xin Luo, Zhiying Chen, Fei Duan, Yilong He and Pengwei Sun
Electronics 2025, 14(17), 3539; https://doi.org/10.3390/electronics14173539 - 5 Sep 2025
Viewed by 699
Abstract
Under the backdrop of low-carbon energy transition, the increasing integration of grid-following (GFL) and grid-forming (GFM) converters into power systems is profoundly altering transient synchronous stability. A critical challenge lies in analyzing synchronous stability in grids with high penetration converters and improving converter [...] Read more.
Under the backdrop of low-carbon energy transition, the increasing integration of grid-following (GFL) and grid-forming (GFM) converters into power systems is profoundly altering transient synchronous stability. A critical challenge lies in analyzing synchronous stability in grids with high penetration converters and improving converter control strategies to enhance stability. This paper selects virtual synchronous generator (VSG)-based converters as representative GFM units to investigate synchronous stability and control in hybrid systems with both VSG and GFL converters. To simplify stability analysis, this study proposes a novel distribution scheme of power supplies based on an assessment of the ability of different sources to reshape synchronous stability. Specifically, synchronous generators (SGs) and GFL converters are located in the power sending area, while VSGs are deployed in the power receiving area. Under this configuration, synchronous risk is predominantly determined by the power-angle difference between VSGs and SGs. Subsequently, the mechanism by which voltage stability affects synchronous stability between SGs and VSGs is revealed. Furthermore, enhanced control strategies for both VSG and GFL converters are proposed which adjust their transient active/reactive power response characteristics to enhance synchronous stability between SGs and VSGs. Finally, the theoretical analysis and control strategies are validated through simulations on a multi-machine, two-area interconnected power system. Under the proposed enhanced control strategies for GFLs and VSGs, the first-swing power-angle amplitude between VSGs and SGs is reduced by 60% and 49%. Full article
Show Figures

Figure 1

27 pages, 11538 KB  
Article
Adaptive Transient Power Angle Control for Virtual Synchronous Generators via Physics-Embedded Reinforcement Learning
by Jiemai Gao, Siyuan Chen, Shixiong Fan, Jun Jason Zhang, Deping Ke, Hao Jun, Kezheng Jiang and David Wenzhong Gao
Electronics 2025, 14(17), 3503; https://doi.org/10.3390/electronics14173503 - 1 Sep 2025
Viewed by 666
Abstract
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient [...] Read more.
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient stability under dynamic grid conditions. This paper proposes a novel adaptive GFM control framework based on physics-informed reinforcement learning, targeting transient power angle stability in systems with high renewable penetration. An adaptive controller, termed the 3N-D controller, is developed to periodically update the virtual inertia and damping coefficients of VSGs based on real-time system observations, enabling anticipatory adjustments to evolving operating conditions. The controller leverages a reinforcement learning architecture embedded with physical priors, which captures the high-order differential relationships between rotor angle dynamics and control variables. This approach enhances generalization, reduces data dependency, and mitigates the risk of local optima. Comprehensive simulations on the IEEE-39 bus system with varying VSG penetration levels validate the proposed method’s effectiveness in improving system stability and control flexibility. The results demonstrate that the physics-embedded GFM strategy can significantly enhance the transient stability and adaptability of future power grids. Full article
Show Figures

Figure 1

21 pages, 5375 KB  
Article
Controllability-Oriented Method to Improve Small-Signal Response of Virtual Synchronous Generators
by Antonija Šumiga, Boštjan Polajžer, Jožef Ritonja and Peter Kitak
Appl. Sci. 2025, 15(15), 8521; https://doi.org/10.3390/app15158521 - 31 Jul 2025
Cited by 1 | Viewed by 421
Abstract
This paper presents a method for optimizing the inertia constants and damping coefficients of interconnected virtual synchronous generators (VSGs) using a genetic algorithm. The goal of optimization is to find a balance between minimizing the rate of change of frequency (RoCoF) and enhancing [...] Read more.
This paper presents a method for optimizing the inertia constants and damping coefficients of interconnected virtual synchronous generators (VSGs) using a genetic algorithm. The goal of optimization is to find a balance between minimizing the rate of change of frequency (RoCoF) and enhancing controllability. Five controllability-based metrics are tested: the minimum eigenvalue, the sum of the two smallest eigenvalues, the maximum eigenvalue, the trace, and the determinant of the controllability Gramian matrix. The approach includes the oscillatory modes’ damping ratio constraints to ensure the small-signal stability of the entire system. The results of optimization on the IEEE 9-bus system with three VSGs show that the proposed method improves controllability, reduces RoCoF, and maintains the desired oscillation damping. The proposed approach was tested through time-domain simulations. Full article
(This article belongs to the Special Issue Control of Power Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 6121 KB  
Article
An Adaptive Control Strategy for a Virtual Synchronous Generator Based on Exponential Inertia and Nonlinear Damping
by Huiguang Pian, Keqilao Meng, Hua Li, Yongjiang Liu, Zhi Li and Ligang Jiang
Energies 2025, 18(14), 3822; https://doi.org/10.3390/en18143822 - 18 Jul 2025
Cited by 2 | Viewed by 711
Abstract
The increasing incorporation of renewable energy into power grids has significantly reduced system inertia and damping, posing challenges to frequency stability and power quality. To address this issue, an adaptive virtual synchronous generator (VSG) control strategy is proposed, which dynamically adjusts virtual inertia [...] Read more.
The increasing incorporation of renewable energy into power grids has significantly reduced system inertia and damping, posing challenges to frequency stability and power quality. To address this issue, an adaptive virtual synchronous generator (VSG) control strategy is proposed, which dynamically adjusts virtual inertia and damping in response to real-time frequency variations. Virtual inertia is modulated by an exponential function according to the frequency variation rate, while damping is regulated via a hyperbolic tangent function, enabling minor support during small disturbances and robust compensation during severe events. Control parameters are optimized using an enhanced particle swarm optimization (PSO) algorithm based on a composite performance index that accounts for frequency deviation, overshoot, settling time, and power tracking error. Simulation results in MATLAB/Simulink under step changes, load fluctuations, and single-phase faults demonstrate that the proposed method reduces the frequency deviation by over 26.15% compared to fixed-parameter and threshold-based adaptive VSG methods, effectively suppresses power overshoot, and eliminates secondary oscillations. The proposed approach significantly enhances grid transient stability and demonstrates strong potential for application in power systems with high levels of renewable energy integration. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop