Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Vibrio parahaemolyticus ATCC17802

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4952 KiB  
Article
Antibacterial Activity of Phloretin Against Vibrio parahaemolyticus and Its Application in Seafood
by Siyang Chen, Wenxiu Zhu, Yiqun Zhan and Xiaodong Xia
Foods 2024, 13(22), 3537; https://doi.org/10.3390/foods13223537 - 6 Nov 2024
Viewed by 1330
Abstract
Although phloretin is widely utilized in the food industry as an additive, its effects on foodborne pathogens remain insufficiently investigated. This study aimed to evaluate the antimicrobial properties of phloretin (PHL) against Vibrio parahaemolyticus (V. parahaemolyticus) and to elucidate the potential [...] Read more.
Although phloretin is widely utilized in the food industry as an additive, its effects on foodborne pathogens remain insufficiently investigated. This study aimed to evaluate the antimicrobial properties of phloretin (PHL) against Vibrio parahaemolyticus (V. parahaemolyticus) and to elucidate the potential mechanisms of action. After PHL treatment, alterations in the cell morphology, cell microstructure, and intracellular contents of V. parahaemolyticus were assessed. Scanning electron microscopy revealed substantial damage to cell integrity, subsequent to PHL treatment. A notable reduction in intracellular components, including proteins, ATP, and DNA, was observed in samples treated with PHL. PHL was shown to inhibit the activities of ATPase, β-galactosidase, and respiratory chain dehydrogenase in V. parahaemolyticus. Furthermore, it was demonstrated to elevate the intracellular levels of reactive oxygen species and promote cell death. After being applied to sea bass, shrimp, and oysters, PHL effectively inactivated V. parahaemolyticus in these seafoods. These findings demonstrate that PHL has potential for application in seafood to control V. parahaemolyticus. Full article
Show Figures

Figure 1

13 pages, 470 KiB  
Article
Evaluation of the Antimicrobial Effects of Olive Mill Wastewater Extract Against Food Spoiling/Poisoning, Fish-Pathogenic and Non-Pathogenic Microorganisms
by Dilek Kahraman Yılmaz, Fevziye Işıl Kesbiç, Ekrem Şanver Çelik, Deniz Anıl Odabaşı, Sevdan Yilmaz and Hany M. R. Abdel-Latif
Microorganisms 2024, 12(11), 2216; https://doi.org/10.3390/microorganisms12112216 - 31 Oct 2024
Cited by 2 | Viewed by 1342
Abstract
Although antibiotics are the main therapy for bacterial infections, the reports showed that the overuse (or misuse) of antibiotics will results in several problems such as the development of antibiotic-resistant strains, persistence of drug residues, and numerous environmental concerns. Therefore, finding antibiotic alternatives [...] Read more.
Although antibiotics are the main therapy for bacterial infections, the reports showed that the overuse (or misuse) of antibiotics will results in several problems such as the development of antibiotic-resistant strains, persistence of drug residues, and numerous environmental concerns. Therefore, finding antibiotic alternatives is considered of vital importance. Investigation of the antimicrobial properties of several plant substances and extracts is of great value to replace antibiotics. With this objective, this study aimed to evaluate the antimicrobial activities of an ethanolic extract prepared from olive mill wastewater (OMWW), which is a by-product of olive oil production with considerable environmental burden, against 38 bacterial strains, including fish-associated pathogens, non-pathogenic isolates, collection strains, and one yeast strain, Candida albicans. Disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal/fungicidal concentration (MBC/MFC) tests were used to determine the antimicrobial activity of the OMWWE. According to the results, OMWWE provoked strong inhibitory effects against Shewanella baltica strain SY-S145. It also showed a moderate inhibitory effect on Plesiomonas shigelloides strain SY-PS16 and Vibrio anguillarum strain SY-L24. The MIC and MBC of OMWWE on Shewanella baltica SY-S145, Vibrio gigantis strain C24, and V. anguillarum strain SY-L24 were 500 µg/mL. The MIC and MBC on V. parahaemolyticus ATCC 17802 were 1000 µg/mL, whereas the values for Aeromonas salmonicida ATCC 33658 were 500 µg/mL and 1000 µg/mL, respectively. To put it briefly, the OMWW extract showed high antimicrobial activity and can act as an environmentally friendly additive for the control and prevention of diseases caused by A. veronii, A. hydrophila, P. shigelloides, S. baltica, V. anguillarum, and V. parahaemolyticus. Its active agents also prevented infections of both fish-associated pathogens and food spoiling bacteria, which means it can not only help in the disease control mechanism but also in improving the safety of food by reduction of the microbial contamination. Full article
(This article belongs to the Special Issue Waterborne Pathogen Infection and Antibiotic Resistance)
10 pages, 1133 KiB  
Communication
Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture
by Jae Hee Jeong, Sunhyun Park, Mi Jang and Keun-sung Kim
Fermentation 2024, 10(7), 356; https://doi.org/10.3390/fermentation10070356 - 15 Jul 2024
Cited by 1 | Viewed by 1754
Abstract
Vibrio cholerae and Vibrio parahaemolyticus are common pathogens linked to human gastroenteritis, particularly in seafood like shrimp. This study investigated the impact of lactic acid bacteria on V. cholerae and V. parahaemolyticus regarding the production of cadaverine, a concerning compound. V. cholerae NCCP [...] Read more.
Vibrio cholerae and Vibrio parahaemolyticus are common pathogens linked to human gastroenteritis, particularly in seafood like shrimp. This study investigated the impact of lactic acid bacteria on V. cholerae and V. parahaemolyticus regarding the production of cadaverine, a concerning compound. V. cholerae NCCP 13589 and V. parahaemolyticus ATCC 27969 were significant producers of amines in experiments conducted using white-leg shrimp (Litopenaeus vannamei) and lysine decarboxylase broth. Notably, the Lactiplantibacillus plantarum NCIMB 6105 and Leuconostoc mesenteroides ATCC 10830 lactic acid bacteria strains demonstrated a pronounced antagonistic effect on the production of biogenic amines by these food-borne pathogenic bacteria. The presence of lactic acid bacteria led to a substantial reduction in cadaverine production in the lysine decarboxylase broth and shrimp extract. The co-culture of two lactobacilli species reduced the cadaverine production in V. cholerae and V. parahaemolyticus by approximately 77 and 80%, respectively. Consequently, the favorable influence of lactic acid bacteria in curbing cadaverine production by food-borne pathogens presents clear advantages for the food industry. Thus, effectively managing these pathogens could prove pivotal in controlling the biogenic amine levels in shrimp. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

14 pages, 1134 KiB  
Article
Development of Polymerase Chain Reaction–High-Resolution Melt Assay for Waterborne Pathogens Legionella pneumophila, Vibrio parahaemolyticus, and Camplobacter jejuni
by Shannon M. Carr and Kelly M. Elkins
Microorganisms 2024, 12(7), 1366; https://doi.org/10.3390/microorganisms12071366 - 3 Jul 2024
Viewed by 1437
Abstract
Legionella pneumophila is the waterborne pathogen primarily responsible for causing both Pontiac Fever and Legionnaire’s Disease in humans. L. pneumophila is transmitted via aerosolized water droplets. The purpose of this study was to design and test primers to allow for rapid polymerase chain [...] Read more.
Legionella pneumophila is the waterborne pathogen primarily responsible for causing both Pontiac Fever and Legionnaire’s Disease in humans. L. pneumophila is transmitted via aerosolized water droplets. The purpose of this study was to design and test primers to allow for rapid polymerase chain reaction (PCR) melt detection and identification of this infectious agent in cases of clinical or emergency response detection. New PCR primers were designed for this species of bacteria; the primer set was purchased from IDT and the target bacterial DNA was purchased from ATCC. The L. pneumophila primers targeted the macrophage infectivity potentiator gene (mip), which inhibits macrophage phagocytosis. The primers were tested for specificity, repeatability, and sensitivity using PCR–high-resolution melt (HRM) assays. The primer set was found to be specific to the designated bacteria and did not amplify the other twenty-one species from the panel. The L. pneumophila assay was able to be multiplexed. The duplex assay consists of primers for L. pneumophila and Vibrio parahaemolyticus, which are both waterborne pathogens. The triplex assay consists of primers for L. pneumophila, V. parahaemolyticus, and Campylobacter jejuni. The unique melting temperature for the L. pneumophila primer assay is 82.84 ± 0.19 °C, the C. jejuni assay is 78.10 ± 0.58 °C, and the V. parahaemolyticus assay is 86.74 ± 0.65 °C. Full article
(This article belongs to the Special Issue Advances in Research on Waterborne Pathogens)
Show Figures

Figure 1

12 pages, 6387 KiB  
Article
Synthesis of Antibacterial Copper Oxide Nanoparticles by Pulsed Laser Ablation in Liquids: Potential Application against Foodborne Pathogens
by Tina Hesabizadeh, Kidon Sung, Miseon Park, Steven Foley, Angel Paredes, Stephen Blissett and Gregory Guisbiers
Nanomaterials 2023, 13(15), 2206; https://doi.org/10.3390/nano13152206 - 29 Jul 2023
Cited by 11 | Viewed by 2677
Abstract
Spherical copper oxide nanoparticles (CuO/Cu2O NPs) were synthesized by pulsed laser ablation in liquids (PLAL). The copper target was totally submerged in deionized (DI) water and irradiated by an infrared laser beam at 1064 nm for 30 min. The NPs were [...] Read more.
Spherical copper oxide nanoparticles (CuO/Cu2O NPs) were synthesized by pulsed laser ablation in liquids (PLAL). The copper target was totally submerged in deionized (DI) water and irradiated by an infrared laser beam at 1064 nm for 30 min. The NPs were then characterized by dynamic light scattering (DLS) and atomic emission spectroscopy (AES) to determine their size distribution and concentration, respectively. The phases of copper oxide were identified by Raman spectroscopy. Then, the antibacterial activity of CuO/Cu2O NPs against foodborne pathogens, such as Salmonella enterica subsp. enterica serotype Typhimurium DT7, Escherichia coli O157:H7, Shigella sonnei ATCC 9290, Yersinia enterocolitica ATCC 27729, Vibrio parahaemolyticus ATCC 49398, Bacillus cereus ATCC 11778, and Listeria monocytogenes EGD, was tested. At a 3 ppm concentration, the CuO/Cu2O NPs exhibited an outstanding antimicrobial effect by killing most bacteria after 5 h incubation at 25 °C. Field emission scanning electron microscope (FESEM) confirmed that the CuO/Cu2O NPs destructed the bacterial cell wall. Full article
(This article belongs to the Special Issue Innovative Biomedical Applications of Laser-Generated Colloids)
Show Figures

Figure 1

13 pages, 3397 KiB  
Article
Protective Effect of Willow (Salix babylonica L.) on Fish Resistance to Vibrio parahaemolyticus and Vibrio alginolyticus
by Thi Minh Ngoc Mai, Thi Bich Huyen Vu, Minh Ha Le, Thi Thu Hien Nguyen, Thi Thu Hang Trinh, Minh Hai Le, Nguyen Ngoc Tran, Quang Linh Nguyen, Thi Hai Yen Pham, Hoang Nam Pham and Thi Tam Pham
Antibiotics 2023, 12(6), 989; https://doi.org/10.3390/antibiotics12060989 - 31 May 2023
Cited by 2 | Viewed by 2078
Abstract
Vibrio spp. cause vibriosis in many saltwater and freshwater aquatic species, such as fish, crustaceans, and mollusks. Vibrio parahaemolyticus and Vibrio alginolyticus are among the few Vibrio species commonly found in infections in fish. This study aimed at investigating the chemical composition and [...] Read more.
Vibrio spp. cause vibriosis in many saltwater and freshwater aquatic species, such as fish, crustaceans, and mollusks. Vibrio parahaemolyticus and Vibrio alginolyticus are among the few Vibrio species commonly found in infections in fish. This study aimed at investigating the chemical composition and evaluating the antibacterial activities of Salix babylonica L. The ethyl acetate (LL2) and methanolic (LL3) extracts were used to evaluate the resistance of strains as V. parahaemolyticus LBT6 and VTCC 12233, and two strains of V. alginolyticus, NG20 and ATCC 17749, and compared their efficacy with cefotaxime in order to find an alternative to antibiotics in the treatment of vibriosis. The obtained results show that the LL2 extract, with its major components identified as chrysoeriol, luteolin, and β-sitosterol, exhibited a bacteriostatic effect against all the tested strains. In parallel, the LL3 extract, with the four major compounds luteolin-7-O-β-D-glucopyranoside, salicin, p-hydroxy benzoic acid, and β-sitosterol-3-O-β-D-glucopyranoside, showed significant bactericidal activity against these four strains; the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) varied from 2.0 to 3.0 μg/mL and from 3.5 to 5.0 μg/mL, respectively. Moreover, the LL3 extract could effectively increase the survival rate of the challenged fish at a dose of 5% (w/w) for the zebrafish (Danio rerio) and 3% (w/w) for the sea bass (Lates calcarifer). The LL3 extract showed a potential application of S. babylonica L. in the prevention and treatment of vibriosis in fish. Full article
(This article belongs to the Section Plant-Derived Antibiotics)
Show Figures

Figure 1

25 pages, 8252 KiB  
Article
Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
by Jorge Iván Castro, Carlos Humberto Valencia Llano, Diego López Tenorio, Marcela Saavedra, Paula Zapata, Diana Paola Navia-Porras, Johannes Delgado-Ospina, Manuel N. Chaur, José Hermínsul Mina Hernández and Carlos David Grande-Tovar
Molecules 2022, 27(11), 3640; https://doi.org/10.3390/molecules27113640 - 6 Jun 2022
Cited by 13 | Viewed by 3587
Abstract
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology [...] Read more.
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination. Full article
(This article belongs to the Special Issue Antimicrobial and Antibacterial Films for Tissue Regeneration)
Show Figures

Figure 1

14 pages, 32944 KiB  
Article
Comparison of Phytochemical Contents, Antioxidant and Antibacterial Activities of Various Solvent Extracts Obtained from ‘Maluma’ Avocado Pulp Powder
by Thi-Van-Linh Nguyen, Quoc-Duy Nguyen, Nhu-Ngoc Nguyen and Thi-Thuy-Dung Nguyen
Molecules 2021, 26(24), 7693; https://doi.org/10.3390/molecules26247693 - 20 Dec 2021
Cited by 10 | Viewed by 5091
Abstract
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to [...] Read more.
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to obtain the extracts from “Maluma” avocado pulp powder prepared by infrared drying. The extracts were analyzed for total polyphenols, phytopigments (total chlorophylls and carotenoids), antioxidant activities (ferric-reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays), and antibacterial activities against seven pathogens (Shigella sonnei ATCC 9290, Escherichia coli ATCC 8739, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 6538, and Bacillus cereus ATCC 11778). The results showed that the acetone solvent could extract the highest polyphenols and chlorophylls with the highest antioxidant activity in terms of ABTS and DPPH assays. In contrast, diethyl ether exhibited the most significant content of carotenoids and FRAP values. However, the methanol extract was the best solvent, exerting the strongest antibacterial and meaningful antioxidant activities. For the bacterial activities, Gram-positive pathogens (Bacillus cereus and Staphylococcus aureus) were inhibited more efficiently by avocado extracts than Gram-negative bacteria. Therefore, the extracts from avocado powder showed great potential for applications in food processing and preservation, pharmaceuticals, and cosmetics. Full article
(This article belongs to the Special Issue Antibacterial Agents from Natural Source)
Show Figures

Figure 1

Back to TopTop