Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Vela Sentosa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 935 KiB  
Article
Enhancing Precision in HIV Treatment: Validation of a Robust Next-Generation Sequencing System for Drug Resistance Mutation Analysis
by Ashutosh Vashisht, Ashis K. Mondal, Vishakha Vashisht, Sudha Ananth, Ahmet Alptekin, Kimya Jones, Jaspreet K. Farmaha and Ravindra Kolhe
Diagnostics 2024, 14(16), 1766; https://doi.org/10.3390/diagnostics14161766 - 14 Aug 2024
Cited by 1 | Viewed by 1800
Abstract
Background: Multidrug-resistant HIV strains challenge treatment efficacy and increase mortality rates. Next-generation sequencing (NGS) technology swiftly detects variants, facilitating personalized antiretroviral therapy. Aim: This study aimed to validate the Vela Diagnostics NGS platform for HIV drug resistance mutation analysis, rigorously assessed with clinical [...] Read more.
Background: Multidrug-resistant HIV strains challenge treatment efficacy and increase mortality rates. Next-generation sequencing (NGS) technology swiftly detects variants, facilitating personalized antiretroviral therapy. Aim: This study aimed to validate the Vela Diagnostics NGS platform for HIV drug resistance mutation analysis, rigorously assessed with clinical samples and CAP proficiency testing controls previously analyzed by Sanger sequencing. Method: The experimental approach involved the following: RNA extraction from clinical specimens, reverse transcription polymerase chain reaction (RT-PCR) utilizing the Sentosa SX 101 platform, library preparation with the Sentosa SQ HIV Genotyping Assay, template preparation, sequencing using the Sentosa SQ301 instrument, and subsequent data analysis employing the Sentosa SQ Suite and SQ Reporter software. Drug resistance profiles were interpreted using the Stanford HIV Drug Resistance Database (HIVdb) with the HXB2 reference sequence. Results: The Vela NGS system successfully identified a comprehensive array of drug resistance mutations across the tested samples: 28 nucleoside reverse transcriptase inhibitors (NRTI), 25 non-nucleoside reverse transcriptase inhibitors (NNRTI), 25 protease inhibitors (PI), and 10 integrase gene-specific variants. Dilution experiments further validated the system’s sensitivity, detecting drug resistance mutations even at viral loads lower than the recommended threshold (1000 copies/mL) set by Vela Diagnostics. Scope: This study underscores the validation and clinical applicability of the Vela NGS system, and its implementation may offer clinicians enhanced precision in therapeutic decision-making for individuals living with HIV. Full article
(This article belongs to the Special Issue Emerging Biomarkers of Clinical Diagnosis)
Show Figures

Figure 1

15 pages, 1832 KiB  
Article
Applying Next-Generation Sequencing to Track HIV-1 Drug Resistance Mutations Circulating in Portugal
by Victor Pimentel, Marta Pingarilho, Cruz S. Sebastião, Mafalda Miranda, Fátima Gonçalves, Joaquim Cabanas, Inês Costa, Isabel Diogo, Sandra Fernandes, Olga Costa, Rita Corte-Real, M. Rosário O. Martins, Sofia G. Seabra, Ana B. Abecasis and Perpétua Gomes
Viruses 2024, 16(4), 622; https://doi.org/10.3390/v16040622 - 17 Apr 2024
Cited by 3 | Viewed by 2159
Abstract
Background: The global scale-up of antiretroviral treatment (ART) offers significant health benefits by suppressing HIV-1 replication and increasing CD4 cell counts. However, incomplete viral suppression poses a potential threat for the emergence of drug resistance mutations (DRMs), limiting ART options, and increasing HIV [...] Read more.
Background: The global scale-up of antiretroviral treatment (ART) offers significant health benefits by suppressing HIV-1 replication and increasing CD4 cell counts. However, incomplete viral suppression poses a potential threat for the emergence of drug resistance mutations (DRMs), limiting ART options, and increasing HIV transmission. Objective: We investigated the patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) among HIV-1 patients in Portugal. Methods: Data were obtained from 1050 HIV-1 patient samples submitted for HIV drug resistance (HIVDR) testing from January 2022 to June 2023. Evaluation of DRM affecting viral susceptibility to nucleoside/tide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and integrase strand transfer inhibitors (INSTIs) was performed using an NGS technology, the Vela Diagnostics Sentosa SQ HIV-1 Genotyping Assay. Results: About 71% of patients were ART naïve and 29% were experienced. Overall, 20% presented with any DRM. The prevalence of TDR and ADR was 12.6% and 41.1%, respectively. M184V, T215S, and M41L mutations for NRTI, K103N for NNRTI, and M46I/L for PIs were frequent in naïve and treated patients. E138K and R263K mutations against INSTIs were more frequent in naïve than treated patients. TDR and ADR to INSTIs were 0.3% and 7%, respectively. Patients aged 50 or over (OR: 1.81, p = 0.015), originating from Portuguese-speaking African countries (PALOPs) (OR: 1.55, p = 0.050), HIV-1 subtype G (OR: 1.78, p = 0.010), and with CD4 < 200 cells/mm3 (OR: 1.70, p = 0.043) were more likely to present with DRMs, while the males (OR: 0.63, p = 0.003) with a viral load between 4.1 to 5.0 Log10 (OR: 0.55, p = 0.003) or greater than 5.0 Log10 (OR: 0.52, p < 0.001), had lower chances of presenting with DRMs. Conclusions: We present the first evidence on TDR and ADR to INSTI regimens in followed up patients presenting for healthcare in Portugal. We observed low levels of TDR to INSTIs among ART-naïve and moderate levels in ART-exposed patients. Regimens containing PIs could be an alternative second line in patients with intermediate or high-level drug resistance, especially against second-generation INSTIs (dolutegravir, bictegravir, and cabotegravir). Full article
(This article belongs to the Special Issue Antiviral Resistance Mutations)
Show Figures

Figure 1

11 pages, 937 KiB  
Article
Optimization of HIV Sequencing Method Using Vela Sentosa Library on Miseq Ilumina Platform
by Nasserdine Papa Mze, Cécile Fernand-Laurent, Solen Daugabel, Olfa Zanzouri and Stéphanie Marque Juillet
Genes 2024, 15(2), 259; https://doi.org/10.3390/genes15020259 - 19 Feb 2024
Viewed by 3059
Abstract
Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela [...] Read more.
Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform. After RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR), minor modifications were applied to the Vela Sentosa kit to adapt it to the Illumina Miseq platform. Analysis of the results showed the same mutations present in the samples using both sequencing platforms. The total number of reads varied from 185,069 to 752,343 and from 642,162 to 2,074,028 in the Ion Torrent PGM platform and the Illumina Miseq platform, respectively. The average depth was 21,955 and 46,856 for Ion Torrent PGM and Illumina Miseq platforms, respectively. The cost of sequencing a run of eight samples was quite similar between the two platforms (about USD 1790 for Illumina Miseq and about USD 1833 for Ion Torrent PGM platform). We have shown for the first time that it is possible to adapt and use the Vela Sentosa kit for the Illumina Miseq platform to obtain high-quality results with a similar cost. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Show Figures

Figure 1

14 pages, 1618 KiB  
Article
Analytical Assessment of the Vela Diagnostics NGS Assay for HIV Genotyping and Resistance Testing: The Apulian Experience
by Maria Addolorata Bonifacio, Chiara Genchi, Antonella Lagioia, Vincenza Talamo, Anna Volpe and Maria Addolorata Mariggiò
Int. J. Mol. Sci. 2022, 23(5), 2727; https://doi.org/10.3390/ijms23052727 - 1 Mar 2022
Cited by 11 | Viewed by 4176
Abstract
Drug-resistance monitoring is one of the hardest challenges in HIV management. Next-generation sequencing (NGS) technologies speed up the detection of drug resistance, allowing the adjustment of antiretroviral therapy and enhancing the quality of life of people living with HIV. Recently, the NGS Sentosa [...] Read more.
Drug-resistance monitoring is one of the hardest challenges in HIV management. Next-generation sequencing (NGS) technologies speed up the detection of drug resistance, allowing the adjustment of antiretroviral therapy and enhancing the quality of life of people living with HIV. Recently, the NGS Sentosa® SQ HIV Genotyping Assay (Vela Diagnostics) received approval for in vitro diagnostics use. This work is the first Italian evaluation of the performance of the Vela Diagnostics NGS platform, assessed with 420 HIV-1 clinical samples. A comparison with Sanger sequencing performance is also reported, highlighting the advantages and disadvantages of the Sentosa® NGS assay. The precision of the technology was studied with reference specimens, while intra- and inter-assay reproducibility were evaluated for selected clinical samples. Vela Diagnostics’ NGS assay reached an 87% success rate through 30 runs of analysis in a real-world clinical context. The concordance with Sanger sequencing outcomes was equal to 97.2%. Several detected mismatches were due to NGS’s superior sensitivity to low-frequency variants. A high accuracy was observed in testing reference samples. Repeatability and reproducibility assays highlighted the good performance of the NGS platform. Beyond a few technical issues that call for further optimization, the key improvement will be a better balance between costs and processing speed. Once these issues have been solved, the Sentosa® SQ HIV Genotyping Assay will be the way forward for HIV resistance testing. Full article
Show Figures

Graphical abstract

Back to TopTop