Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Van’t Hoff’s equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4149 KiB  
Article
2,2,3,3,4,4,4-Heptafluorobutyl Acetate—Chemical Equilibrium and Kinetics of the Esterification Reaction of 2,2,3,3,4,4,4-Heptafluorobutan-1-ol and Acetic Acid in the Presence of an Acidic Catalyst
by Andrei V. Polkovnichenko, Evgenia I. Kovaleva, Viktor I. Privalov, Nikita A. Selivanov, Sergey Ya. Kvashnin and Egor V. Lupachev
Molecules 2025, 30(8), 1744; https://doi.org/10.3390/molecules30081744 - 13 Apr 2025
Cited by 1 | Viewed by 683
Abstract
The kinetics and chemical equilibrium of the esterification reaction of acetic acid (AAc) and 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFBol) (using sulfuric acid as a catalyst) are determined experimentally. The study presents the dependences of Keq on the initial molar ratio of reagents, catalyst concentration [...] Read more.
The kinetics and chemical equilibrium of the esterification reaction of acetic acid (AAc) and 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFBol) (using sulfuric acid as a catalyst) are determined experimentally. The study presents the dependences of Keq on the initial molar ratio of reagents, catalyst concentration and temperature. It is shown that all of the above parameters significantly affect the chemical equilibrium of the system. According to the Van’t Hoff equation, the standard enthalpy and standard entropy are calculated from the experimental data. The esterification process of AAc and HFBol is characterized by the negative heat effect (rH > 0). The homogeneous and heterogeneous regions of the chemical equilibrium composition at different settings are given. In the homogeneous region of the chemical equilibrium composition, it is found that the rate constant and half-reaction time do not depend on the initial molar ratio of the reagents. The dependencies of the rate constant on the temperature are obtained, and the parameters of the Arrhenius equation are estimated from the experiments. Full article
Show Figures

Figure 1

11 pages, 963 KiB  
Article
Solubility of Deferiprone in Non-Aqueous Mixtures of Polyethylene Glycol 400 and 1-Propanol at 293.2–323.2 K
by Homa Rezaei and Abolghasem Jouyban
Liquids 2025, 5(1), 5; https://doi.org/10.3390/liquids5010005 - 13 Feb 2025
Viewed by 906
Abstract
Utilizing the shake-flask technique under atmospheric pressure (101 kPa) within the temperature range of 293.2 to 313.2 K, the experimental solubility and density values of deferiprone were determined in binary mixtures of polyethylene glycol 400 and 1-propanol. The mole fraction solubility of deferiprone [...] Read more.
Utilizing the shake-flask technique under atmospheric pressure (101 kPa) within the temperature range of 293.2 to 313.2 K, the experimental solubility and density values of deferiprone were determined in binary mixtures of polyethylene glycol 400 and 1-propanol. The mole fraction solubility of deferiprone exhibited an augmentation with elevated temperature and increased polyethylene glycol 400 mass ratio in polyethylene glycol 400 + 1-propanol compositions. A subsequent regression analysis of the solubility data was conducted employing the van’t Hoff, λh, Yalkowsky, modified Wilson, Jouyban–Acree and Jouyban–Acree–van’t Hoff models upon the comprehensive evaluation of the entire dataset; the van’t Hoff equation demonstrated the most favorable regression. Furthermore, the findings of this study hold significance for advancing the understanding of the basic thermodynamic data pertinent to the crystallization and industrial separation processes of deferiprone. Full article
(This article belongs to the Collection Feature Papers in Solutions and Liquid Mixtures Research)
Show Figures

Figure 1

17 pages, 4582 KiB  
Article
Characteristics of Carbon Fluxes and Their Environmental Control in Chenhu Wetland, China
by Ya Zhang, Li Liu, Hua Luo, Wei Wang and Peng Li
Water 2024, 16(22), 3169; https://doi.org/10.3390/w16223169 - 6 Nov 2024
Viewed by 1022
Abstract
Carbon dioxide (CO2) flux measurements were conducted throughout the year 2022 utilizing the eddy covariance technique in this study to investigate the characteristics of carbon fluxes and their influencing factors in the Chenhu wetland, a representative subtropical lake-marsh wetland located in [...] Read more.
Carbon dioxide (CO2) flux measurements were conducted throughout the year 2022 utilizing the eddy covariance technique in this study to investigate the characteristics of carbon fluxes and their influencing factors in the Chenhu wetland, a representative subtropical lake-marsh wetland located in the middle reaches of the Yangtze River in China. The results revealed that the mean daily variation of CO2 flux during the growing season exhibited a U-shaped pattern, with measurements ranging from −12.42 to 4.28 μmolCO2·m−2·s−1. The Chenhu wetland ecosystem functions as a carbon sink throughout the growing season, subsequently transitioning to a carbon source during the non-growing season, as evidenced by observations made in 2022. The annual CO2 absorption was quantified at 21.20 molCO2·m−2, a figure that is lower than those documented for specific subtropical lake wetlands, such as Dongting Lake and Poyang Lake. However, this measurement aligns closely with the average net ecosystem exchange (NEE) reported for wetlands across Asia. The correlation between daytime CO2 flux and photosynthetically active radiation (PAR) can be accurately represented through rectangular hyperbola equations throughout the growing season. Vapor pressure deficit (VPD) acts as a constraining factor for daytime NEE, with an optimal range established between 0.5 and 1.5 kPa. Furthermore, air temperature (Ta), relative humidity (RH), and vapor pressure difference (VPD) are recognized as the principal determinants affecting NEE during the nocturnal period. The association between Ta and NEE during the non-growing season conforms to the van’t Hoff model, suggesting that NEE increases in response to elevated Ta during this timeframe. Full article
Show Figures

Figure 1

9 pages, 1527 KiB  
Article
Thermally Enhanced Acidity for Regeneration of Carbon Dioxide Sorbent
by Osamah Alghazwat, Melyse Laud and Yi Liao
Energies 2024, 17(17), 4279; https://doi.org/10.3390/en17174279 - 27 Aug 2024
Cited by 2 | Viewed by 1198
Abstract
The thermal regeneration of CO2 sorbent is the most energy-consuming step in the CO2-capturing process. Although the addition of an acid can induce CO2 release, it does not regenerate the sorbent because the acid forms a salt with the [...] Read more.
The thermal regeneration of CO2 sorbent is the most energy-consuming step in the CO2-capturing process. Although the addition of an acid can induce CO2 release, it does not regenerate the sorbent because the acid forms a salt with the basic sorbent and diminishes its capability for capturing CO2. In this work, a novel approach based on thermally enhanced acidity was studied. This approach utilizes an additive that does not affect the sorbent at room temperature, but its acidity significantly increases at elevated temperatures, which assists the thermal release of CO2. M-cresol was added to an aqueous solution of morpholine. The CO2 capture and release of the mixture were compared to those of a control solution without m-cresol. The amounts of carbamate, bicarbonate, and unreacted morpholine were quantitatively determined using 1H NMR and weight analysis. The results showed that m-cresol did not affect the reactivity of morpholine in the formation of carbamate with CO2 at room temperature. At elevated temperatures, the acidity of m-cresol increased according to Van’t Hoff’s equation, which resulted in a significantly higher rate of CO2 release than that of the control. Given the low cost of m-cresol and its derivatives, this approach could lead to practical technology in the near future. Full article
(This article belongs to the Special Issue Carbon Capture Technologies for Sustainable Energy Production)
Show Figures

Figure 1

13 pages, 1559 KiB  
Article
Dissolution Thermodynamics and Preferential Solvation of Phenothiazine in Some Aqueous Cosolvent Systems
by Fleming Martínez, María Ángeles Peña and Abolghasem Jouyban
Liquids 2024, 4(2), 443-455; https://doi.org/10.3390/liquids4020024 - 20 Jun 2024
Cited by 1 | Viewed by 1244
Abstract
Published equilibrium mole fraction solubilities of phenothiazine in ethanol, propylene glycol and water as mono-solvents at several temperatures were investigated to find standard apparent thermodynamic quantities of dissolution mixing and solvation based on the van’t Hoff and Gibbs equations. Further, by processing the [...] Read more.
Published equilibrium mole fraction solubilities of phenothiazine in ethanol, propylene glycol and water as mono-solvents at several temperatures were investigated to find standard apparent thermodynamic quantities of dissolution mixing and solvation based on the van’t Hoff and Gibbs equations. Further, by processing the reported mole fraction solubility values of phenothiazine in some aqueous cosolvent mixtures at T/K = 298.2, the inverse Kirkwood–Buff integrals treatment demonstrated preferential hydration of phenothiazine in water-rich mixtures and preferential solvation of this agent by cosolvents in mixtures of 0.24 < x1 < 1.00 in the {ethanol (1) + water (2)} mixed system and mixtures of 0.18 < x1 < 1.00 in the {propylene glycol (1) + water (2)} mixed system. Full article
Show Figures

Figure 1

11 pages, 3473 KiB  
Communication
Correlation of Experimental and Calculated Inhibition Constants of Protease Inhibitor Complexes
by Peter Goettig, Xingchen Chen and Jonathan M. Harris
Int. J. Mol. Sci. 2024, 25(4), 2429; https://doi.org/10.3390/ijms25042429 - 19 Feb 2024
Cited by 2 | Viewed by 2552
Abstract
Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the [...] Read more.
Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the YASARA plugin FoldX were used to derive inhibition constants Ki from PDB coordinates of protease–inhibitor complexes. At the same time, corresponding KD values were obtained from the PRODIGY server. These results correlated well with the experimental values, particularly for serine proteases. In addition, analyses were performed for inhibitory complexes of cysteine and aspartic proteases, as well as of metalloproteases, whereby the PRODIGY data appeared to be more consistent. Based on our analyses, we calculated theoretical Ki values for trypsin with sunflower trypsin inhibitor (SFTI-1) variants, which yielded the more rigid Pro14 variant, with probably higher potency than the wild-type inhibitor. Moreover, a hirudin variant with an Arg1 and Trp3 is a promising basis for novel thrombin inhibitors with high potency. Further examples from antibody interaction and a cancer-related effector-receptor system demonstrate that our approach is applicable to protein interaction studies beyond the protease field. Full article
(This article belongs to the Special Issue Biocatalysis: Mechanisms of Proteolytic Enzymes 2.0)
Show Figures

Figure 1

15 pages, 5309 KiB  
Article
An Investigation into the Stability Source of Collagen Fiber Modified Using Cr(III): An Adsorption Isotherm Study
by Jiheng Li, Wenjun Long, Liangqiong Peng, Lijun Guo and Wenhua Zhang
Molecules 2024, 29(2), 300; https://doi.org/10.3390/molecules29020300 - 6 Jan 2024
Cited by 9 | Viewed by 1574
Abstract
The enhanced hydrothermal stability of leather, imparted by little Cr(III), has traditionally been ascribed to strong coordinate bonds. However, this explanation falls short when considering that the heat-induced shrinking of collagen fiber is predominantly driven by rupturing weak H-bonds. This study explored the [...] Read more.
The enhanced hydrothermal stability of leather, imparted by little Cr(III), has traditionally been ascribed to strong coordinate bonds. However, this explanation falls short when considering that the heat-induced shrinking of collagen fiber is predominantly driven by rupturing weak H-bonds. This study explored the stability source via adsorption thermodynamics using collagen fiber as an adsorbent. Eleven isotherm models were fitted with the equilibrium dataset. Nine of these models aptly described Cr(III) adsorption based on the physical interpretations of model parameters and error functions. The adsorption equilibrium constants from six models could be transformed into dimensionless thermodynamic equilibrium constants. Based on the higher R2 of the van’t Hoff equation, thermodynamic parameters (∆G°, ∆H°, ∆S°) from the Fritz–Shluender isotherm model revealed that the adsorption process typifies endothermic and spontaneous chemisorption, emphasizing entropy increase as the primary driver of Cr(III) bonding with collagen. Thus, the release of bound H2O from collagen is identified as the stability source of collagen fiber modified by Cr(III). This research not only clarifies the selection and applicability of the isotherm model in a specific aqueous system but also identifies entropy, rather than enthalpy, as the principal stability source of Cr-leather. These insights facilitate the development of novel methods to obtain stable collagen-based material. Full article
Show Figures

Graphical abstract

22 pages, 1198 KiB  
Article
Synthesis of Composites for the Removal of F- Anions
by Adriana Saldaña-Robles, Javier Antonio Arcibar-Orozco, Luz Rocío Guerrero-Mosqueda, César Eduardo Damián-Ascencio, Alfredo Marquez-Herrera, Miguel Corona, Armando Gallegos-Muñoz and Sergio Cano-Andrade
Nanomaterials 2023, 13(16), 2277; https://doi.org/10.3390/nano13162277 - 8 Aug 2023
Cited by 4 | Viewed by 2096
Abstract
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer’s method. Fourier transform infrared spectrometry, [...] Read more.
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer’s method. Fourier transform infrared spectrometry, X-ray, Raman spectroscopy, thermogravimetric analysis, surface charge distribution, specific surface area and porosity, adsorption isotherms, and the van’t Hoff equation are used for the characterization of the synthesized materials. Results show that the addition of amines with ferrihydrite generates wrinkles on the surface layers, suggesting a successful incorporation of nitrogen onto the graphene oxide; and as a consequence, the adsorption capacity per unit area of the materials is increased. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (Volume II))
Show Figures

Figure 1

19 pages, 4551 KiB  
Article
Measurement and Correlation of Solubility of Thiamine Nitrate in Three Binary Solvents and Thermodynamic Properties for the Solutions in Different Binary Mixtures at (278.15–313.15) K
by Xinda Li, Zhengjiang Wang, Jing Wang, Jiaqi Lu, Jin Mao, Dandan Han and Kangli Li
Molecules 2023, 28(13), 5012; https://doi.org/10.3390/molecules28135012 - 27 Jun 2023
Cited by 2 | Viewed by 2026
Abstract
The solubility of thiamine nitrate in {(methanol, acetone, isopropanol) + water} solvents will provide essential support for crystallization design and further theoretical studies. In this study, the solubility was experimentally measured over temperatures ranging from 278.15 to 313.15 K under atmospheric pressure using [...] Read more.
The solubility of thiamine nitrate in {(methanol, acetone, isopropanol) + water} solvents will provide essential support for crystallization design and further theoretical studies. In this study, the solubility was experimentally measured over temperatures ranging from 278.15 to 313.15 K under atmospheric pressure using a dynamic method. The solubility increased with increasing temperature at a constant solvent composition. The dissolving capacity of thiamine nitrate in the three binary solvent mixtures at constant temperature in the low ratio of water ranked as water + methanol > water + acetone > water + isopropanol generally. Interestingly, in the high ratio of water systems, especially when the molar concentration of water was greater than 0.6, the dissolving capacity ranked as water + acetone > water + methanol > water + isopropanol. Additionally, the modified Apelblat equation, λh equation, van’t Hoff equation and NRTL model were used to correlate the solubility data in binary mixtures. It turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the thermodynamic properties of the dissolution process of thiamine nitrate were also calculated based on the modified van’t Hoff equation. The results indicate that the dissolution process of the thiamine nitrate in the selected solvents is all endothermic. Full article
Show Figures

Figure 1

21 pages, 5486 KiB  
Article
Facile Recrystallization Process for Tuning the Crystal Morphology and Thermal Safety of Industrial Grade PYX
by Mi Zhang, Jianbo Fu, Hui Ren, Shengfu Li, Xiaole Sun and Qingjie Jiao
Molecules 2023, 28(12), 4735; https://doi.org/10.3390/molecules28124735 - 13 Jun 2023
Cited by 8 | Viewed by 3223
Abstract
In this study, the crystal appearance of industrial grade 2,6-diamino-3,5-dinitropyridine (PYX) was mostly needle-shaped or rod-shaped with an average aspect ratio of 3.47 and roundness of 0.47. According to national military standards, the explosion percentage of impact sensitivity s about 40% and friction [...] Read more.
In this study, the crystal appearance of industrial grade 2,6-diamino-3,5-dinitropyridine (PYX) was mostly needle-shaped or rod-shaped with an average aspect ratio of 3.47 and roundness of 0.47. According to national military standards, the explosion percentage of impact sensitivity s about 40% and friction sensitivity is about 60%. To improve loading density and pressing safety, the solvent–antisolvent method was used to optimize the crystal morphology, i.e., to reduce the aspect ratio and increase the roundness value. Firstly, the solubility of PYX in DMSO, DMF, and NMP was measured by the static differential weight method, and the solubility model was established. The results showed that the Apelblat equation and Van’t Hoff equation could be used to clarify the temperature dependence of PYX solubility in a single solvent. Scanning electron microscopy (SEM) was used to characterize the morphology of the recrystallized samples. After recrystallization, the aspect ratio of the samples decreased from 3.47 to 1.19, and roundness increased from 0.47 to 0.86. The morphology was greatly improved, and the particle size decreased. The structures before and after recrystallization were characterized by infrared spectroscopy (IR). The results showed that no chemical structure changes occurred during recrystallization, and the chemical purity was improved by 0.7%. According to the GJB-772A-97 explosion probability method, the mechanical sensitivity of explosives was characterized. After recrystallization, the impact sensitivity of explosives was significantly reduced from 40% to 12%. A differential scanning calorimeter (DSC) was used to study the thermal decomposition. The thermal decomposition temperature peak of the sample after recrystallization was 5 °C higher than that of the raw PYX. The thermal decomposition kinetic parameters of the samples were calculated by AKTS software, and the thermal decomposition process under isothermal conditions was predicted. The results showed that the activation energy (E) of the samples after recrystallization was higher by 37.9~527.6 kJ/mol than raw PYX, so the thermal stability and safety of the recrystallized samples were improved. Full article
Show Figures

Figure 1

16 pages, 2880 KiB  
Article
Solubility Determination and Comprehensive Analysis of the New Heat-Resistant Energetic Material TNBP
by Luoluo Wang, Minchang Wang, Ying Kang, Yong Zhu, Hai Chang and Ning Liu
Molecules 2023, 28(6), 2424; https://doi.org/10.3390/molecules28062424 - 7 Mar 2023
Cited by 3 | Viewed by 2151
Abstract
To improve the crystal quality of 4,8-bis(2,4,6-trinitrophenyl)difurazolo [3,4-b:3′,4′-e] pyrazine (TNBP), the solubility of TNBP in organic solvents (six pure and four mixed solvents) was determined by the laser monitoring technique from 293.15 to 353.15 K. The results showed that the solubility was positively [...] Read more.
To improve the crystal quality of 4,8-bis(2,4,6-trinitrophenyl)difurazolo [3,4-b:3′,4′-e] pyrazine (TNBP), the solubility of TNBP in organic solvents (six pure and four mixed solvents) was determined by the laser monitoring technique from 293.15 to 353.15 K. The results showed that the solubility was positively correlated with the increase in the experimental temperature and the main solvent content, except for the co-solvent phenomenon in the DMSO + ethyl acetate solvent mixture. To explain the dissolution behavior of TNBP, the KAT-SER model was analyzed for pure solvent systems, and it was found that hydrogen bonding alkalinity and self-cohesiveness were the main influencing factors. The free energy of solvation and radial distribution function of TNBP in mixed solvents were also obtained by molecular dynamics simulation, and the effect of solute–solvent and solvent–solvent interactions on the solubility trend was analyzed. The experimental data were correlated using three empirical equations (van’t Hoff equation, modified Apelblat equation, and λh equation), and the deviation analysis showed the good applicability of the modified Apelblat model. Furthermore, the dissolution of TNBP was heat-absorbing and not spontaneous, according to the thermodynamic characteristics estimated by the van’t Hoff equation. Full article
Show Figures

Figure 1

19 pages, 7836 KiB  
Article
Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling
by Sabrina Farch, Madiha Melha Yahoum, Selma Toumi, Hichem Tahraoui, Sonia Lefnaoui, Mohammed Kebir, Meriem Zamouche, Abdeltif Amrane, Jie Zhang, Amina Hadadi and Lotfi Mouni
Separations 2023, 10(1), 60; https://doi.org/10.3390/separations10010060 - 16 Jan 2023
Cited by 53 | Viewed by 4246
Abstract
This research aimed to assess the adsorption properties of raw walnut shell powder (WNSp) for the elimination of methylene blue (MB) from an aqueous medium. The initial MB concentration (2–50 mg/L), the mass of the biomaterial (0.1–1 g/L), the contact time (10–120 min), [...] Read more.
This research aimed to assess the adsorption properties of raw walnut shell powder (WNSp) for the elimination of methylene blue (MB) from an aqueous medium. The initial MB concentration (2–50 mg/L), the mass of the biomaterial (0.1–1 g/L), the contact time (10–120 min), the medium’s pH (2–12), and the temperature (25–55 °C) were optimized as experimental conditions. A maximum adsorption capacity of 19.99 mg/g was obtained at an MB concentration of 50 mg/L, a medium pH of 6.93 and a temperature of 25 °C, using 0.2 g/L of WNSp. These conditions showed that the MB dye elimination process occurred spontaneously. Different analytical approaches were used to characterize the WNSp biomaterial, including functional groups involved in MB adsorption, the surface characteristics and morphological features of the WNSp before and after MB uptake, and identification of WNSp based on their diffraction pattern. The experimental isotherm data were analyzed by the Langmuir and Freundlich models for the adsorption of MB dye. The corresponding values of parameter RL of Langmuir were between 0.51 and 0.172, which confirmed the WNSp’s favorable MB dye adsorption. The experimental kinetic data were examined, and the pseudo-second-order model was shown to be more suitable for describing the adsorption process, with an excellent determination coefficient (R2 = 0.999). The exchanged standard enthalpy (H° = −22.456 KJ.mol−1) was calculated using the van ‘t Hoff equation, and it was proven that the adsorption process was exothermic. The spontaneous nature and feasibility of the MB dye adsorption process on WNSp were validated by negative standard enthalpy values (G°) ranging from −2.580 to −0.469 at different temperatures. It was established that WNSp may be employed as a novel, effective, low-cost adsorbent for the elimination of methylene blue in aqueous solutions. Full article
Show Figures

Figure 1

22 pages, 2614 KiB  
Article
Enthalpy-Entropy Compensation Effect in Saturated Solutions on an Example of Polynuclear Aromatics According to Thermodynamics at Melting Temperature
by Andrzej Mianowski and Grzegorz Łabojko
Entropy 2023, 25(1), 55; https://doi.org/10.3390/e25010055 - 28 Dec 2022
Viewed by 2423
Abstract
A thermodynamic the influence of temperature on the logarithm of the considered quantity is expressed by bifunctional functional terms (1/T, lnT). For this purpose, the Apelblat & Manzurola (A&M) equation was used for extended model dissolution analysis of 12 [...] Read more.
A thermodynamic the influence of temperature on the logarithm of the considered quantity is expressed by bifunctional functional terms (1/T, lnT). For this purpose, the Apelblat & Manzurola (A&M) equation was used for extended model dissolution analysis of 12 aromatic hydrocarbons in tetralin and decalin vs. temperature for saturated solutions. The A&M equation was found to be thermodynamically compensatory in the sense of Enthalpy-Entropy-Compensation (EEC) while limiting melting temperature Tm=mHmS. The coefficients for the functional terms A1 vs. A2 are a linear relationship, with a slope called the compensation temperature Tc, as ratio of average enthalpy to average entropy. From this dependence, it has been shown that the approximation of cp=mS¯ is justified, also assuming the average entropy. Regarding the term representing the activity coefficients, modifications to the A&M equation were proposed by replacing the intercept and it was shown that the new form correctly determines mH. However, the condition is that the molar fraction of the solute exceeds x > 0.5 moles. It has been shown that the simplest equation referred to van ’t Hoff’s isobar also allows the simultaneous determination of enthalpy and entropy, but these quantities do not always come down to melting temperature. Full article
Show Figures

Figure 1

9 pages, 2992 KiB  
Article
Solvent–Solute Interaction Effect on Permeation Flux through Forward Osmosis Membranes Investigated by Non-Equilibrium Molecular Dynamics
by Hayato Higuchi, Masaya Miyagawa and Hiromitsu Takaba
Membranes 2022, 12(12), 1249; https://doi.org/10.3390/membranes12121249 - 9 Dec 2022
Cited by 4 | Viewed by 2216
Abstract
The relationship between the solvent–solute interaction and permeation properties is fundamental in the development of the forward osmosis (FO) membrane. In this study, we report on the quantitative reproduction of the permeation flux, which has different solvent–solute interactions, through the modeled FO membrane [...] Read more.
The relationship between the solvent–solute interaction and permeation properties is fundamental in the development of the forward osmosis (FO) membrane. In this study, we report on the quantitative reproduction of the permeation flux, which has different solvent–solute interactions, through the modeled FO membrane by non-equilibrium molecular dynamics (NEMD). The interaction effect was investigated by changing the interatomic interaction between the solute and the solvent. The calculated permeation through the semi-permeable modeled FO membrane, in which the interaction between solvent and solution is equal to that between solutions, was consistent with the theoretical curve derived from the combination of the permeation flux and Van’t Hoff equations. These results validate the NEMD for the evaluation of permeation in FO. On the other hand, the permeation is much derived from the theoretical values when the interaction between the solvent and solute atoms is relatively large. However, the simulated permeation was consistent with the theoretical curve, correcting the solution concentration by the coordination number of the solvent atoms to the solute atoms. Our results imply that permeation flux through the FO membrane is significantly changed by the interaction between the solute and the solvent and can be theoretically predicted by calculating the coordination number of the solvent to the solute, which can be readily estimated by equilibrium molecular dynamics simulation. Full article
Show Figures

Figure 1

12 pages, 1458 KiB  
Article
Soil Moisture and Temperature Effects on Granule Dissolution and Urease Activity of Urea with and without Inhibitors—An Incubation Study
by Kang Ni and Andreas Siegfried Pacholski
Agriculture 2022, 12(12), 2037; https://doi.org/10.3390/agriculture12122037 - 28 Nov 2022
Cited by 16 | Viewed by 4102
Abstract
Urea granule dissolution in soil and soil urease activity are essential parameters for the accurate prediction of nitrogen dynamics after urea application, but both are scarcely studied. The response of urease activity to temperature is unclear under the addition of urease or nitrification [...] Read more.
Urea granule dissolution in soil and soil urease activity are essential parameters for the accurate prediction of nitrogen dynamics after urea application, but both are scarcely studied. The response of urease activity to temperature is unclear under the addition of urease or nitrification inhibitors. In this study, we conducted laboratory incubation trials using glass jars with 100 g soil to quantify urea granule dissolution. Urease activity after urease and nitrification inhibitor addition were investigated in plastic bottles (5 g soil) under different temperatures. Inhibitor N-(2-nitrophenyl) phosphoric triamide (2-NPT), and a mixture of dicyandiamide and 1 H-1,2,4-triazol (DCD/HZ) were tested as urease and nitrification inhibitors separately and in combination. The dynamics of urease activity was fitted with Michaelis–Menten kinetics combined with the Van’t Hoff equation. At low soil moisture contents close to air-dry conditions (4–8% w/w water content), soil moisture was the dominant factor, but at higher soil moisture contents (28% and 48% w/w), temperature controlled the dissolution process. Dissolution could take several days or even longer at very dry soil conditions, while it was completed between a few hours and 24 h at high soil moisture levels. Urea with urease inhibitor formulation dissolved significantly slower at a moisture level of 28% (w/w). In the studied soil, urease activity varied between 2.9 and 54.4 mg NH4+-N kg−1 h−1. Across all urea concentrations, the addition of urease inhibitor 2-NPT significantly reduced urease activity. The relationship between urease activity and urea addition rate could be accurately described with Michaelis–Menten kinetics, and urease inhibitor addition reduced the temperature sensitivity of urease activity by 7%, while the nitrification inhibitor increased it by 4%. Parameter estimates and process characterization for urea granule dissolution and urea hydrolysis in this study are meaningful for and helpful in agricultural practice and the model simulation of soil nitrogen dynamics. Full article
(This article belongs to the Special Issue Nitrogen Fertilization in Crop Production)
Show Figures

Figure 1

Back to TopTop