Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = UV/NIR blockers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1825 KiB  
Article
From Solid-State Cluster Compounds to Functional PMMA-Based Composites with UV and NIR Blocking Properties, and Tuned Hues
by Maria Amela-Cortes, Maxence Wilmet, Samuel Le Person, Soumaya Khlifi, Clément Lebastard, Yann Molard and Stéphane Cordier
Nanomaterials 2023, 13(1), 144; https://doi.org/10.3390/nano13010144 - 28 Dec 2022
Viewed by 2300
Abstract
New nanocomposite materials with UV-NIR blocking properties and hues ranging from green to brown were prepared by integrating inorganic tantalum octahedral cluster building blocks prepared via solid-state chemistry in a PMMA matrix. After the synthesis by the solid-state chemical reaction of the K [...] Read more.
New nanocomposite materials with UV-NIR blocking properties and hues ranging from green to brown were prepared by integrating inorganic tantalum octahedral cluster building blocks prepared via solid-state chemistry in a PMMA matrix. After the synthesis by the solid-state chemical reaction of the K4[{Ta6Bri12}Bra6] ternary halide, built-up from [{Ta6Bri12}Bra6]4− anionic building blocks, and potassium cations, the potassium cations were replaced by functional organic cations (Kat+) bearing a methacrylate function. The resulting intermediate, (Kat)2[{Ta6Bri12}Bra6], was then incorporated homogeneously by copolymerization with MMA into transparent PMMA matrices to form a brown transparent hybrid composite Ta@PMMAbrown. The color of the composites was tuned by controlling the charge and consequently the oxidation state of the cluster building block. Ta@PMMAgreen was obtained through the two-electron reduction of the [{Ta6Bri12}Bra6]2− building blocks from Ta@PMMAbrown in solution. Indeed, the control of the oxidation state of the Ta6 cluster inorganic building blocks occurred inside the copolymer, which not only allowed the tuning of the optical properties of the composite in the visible region but also allowed the tuning of its UV and NIR blocking properties. Full article
(This article belongs to the Special Issue Functional Nanostructured Materials—from Synthesis to Applications)
Show Figures

Graphical abstract

20 pages, 5665 KiB  
Article
Controlling the Deposition Process of Nanoarchitectonic Nanocomposites Based on {Nb6−xTaxXi12}n+ Octahedral Cluster-Based Building Blocks (Xi = Cl, Br; 0 ≤ x ≤ 6, n = 2, 3, 4) for UV-NIR Blockers Coating Applications
by Clément Lebastard, Maxence Wilmet, Stéphane Cordier, Clothilde Comby-Zerbino, Luke MacAleese, Philippe Dugourd, Toru Hara, Naoki Ohashi, Tetsuo Uchikoshi and Fabien Grasset
Nanomaterials 2022, 12(12), 2052; https://doi.org/10.3390/nano12122052 - 15 Jun 2022
Cited by 6 | Viewed by 2612
Abstract
The antagonism between global energy needs and the obligation to slow global warming is a current challenge. In order to ensure sufficient thermal comfort, the automotive, housing and agricultural building sectors are major energy consumers. Solar control materials and more particularly, selective glazing [...] Read more.
The antagonism between global energy needs and the obligation to slow global warming is a current challenge. In order to ensure sufficient thermal comfort, the automotive, housing and agricultural building sectors are major energy consumers. Solar control materials and more particularly, selective glazing are part of the solutions proposed to reduce global energy consumption and tackle global warming. In this context, these works are focused on developing new highly ultraviolet (UV) and near-infrared (NIR) absorbent nanocomposite coatings based on K4[{Nb6-xTaxXi12}Xa6]. (X = Cl, Br, 0 ≤ x ≤ 6) transition metal cluster compounds. These compounds contain cluster-based active species that are characterized by their strong absorption of UV and NIR radiations as well as their good transparency in the visible range, which makes them particularly attractive for window applications. Their integration, by solution processes, into a silica-polyethylene glycol or polyvinylpyrrolidone matrices is discussed. Of particular interest is the control and the tuning of their optical properties during the integration and shaping processes. The properties of the solutions and films were investigated by complementary techniques (UV-Vis-NIR spectrometry, ESI-MS, SEM, HRTEM, etc.). Results of these works have led to the development of versatile solar control coatings whose optical properties are competitive with commercialized material. Full article
(This article belongs to the Special Issue Functional Nanocomposite Material Based on Metal Atom Clusters)
Show Figures

Graphical abstract

Back to TopTop