Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = TLS LiDAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1092 KB  
Review
A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment
by Asma Gharnate, Hatim Sanad, Majda Oueld Lhaj and Nadia Mhammdi
GeoHazards 2025, 6(4), 69; https://doi.org/10.3390/geohazards6040069 - 28 Oct 2025
Viewed by 273
Abstract
Coastal boulder deposits (CBDs) are among the most striking geomorphic signatures of extreme wave activity, recording the action of both tsunamis and severe storms. Their significance extends beyond geomorphology, providing geological archives that capture rare but high-impact events beyond the scope of instrumental [...] Read more.
Coastal boulder deposits (CBDs) are among the most striking geomorphic signatures of extreme wave activity, recording the action of both tsunamis and severe storms. Their significance extends beyond geomorphology, providing geological archives that capture rare but high-impact events beyond the scope of instrumental or historical records. This review critically examines the origins, emplacement mechanisms, diagnostic morphology, monitoring tools, and global case studies of CBDs with the aim of clarifying the storm–tsunami debate and advancing their application in coastal hazard assessment. A systematic literature survey of 77 peer-reviewed studies published between 1991 and 2025 was conducted using Scopus and Web of Science, with inclusion criteria ensuring relevance to extreme-wave processes, geomorphic analysis, and chronological methods. Multiproxy approaches were emphasized, integrating geomatics (RTK-GPS, UAV-SfM, TLS, LiDAR), geochronology (14C, U–Th, OSL, cosmogenic nuclides, VRM), and hydrodynamic modeling. Findings show that tsunamis explain the largest and most inland megaclasts, while modern storms have proven capable of mobilizing boulders exceeding 200 t at elevations up to 30 m. Many deposits are polygenetic, shaped by successive high-energy events, complicating binary classification. CBDs emerge as multifaceted archives of extreme marine forcing, essential for refining hazard assessments in a changing climate. Full article
Show Figures

Figure 1

24 pages, 5353 KB  
Article
Comparative Accuracy Assessment of Unmanned and Terrestrial Laser Scanning Systems for Tree Attribute Estimation in an Urban Mediterranean Forest
by Ante Šiljeg, Katarina Kolar, Ivan Marić, Fran Domazetović and Ivan Balenović
Remote Sens. 2025, 17(21), 3557; https://doi.org/10.3390/rs17213557 - 28 Oct 2025
Viewed by 241
Abstract
Urban mediterranean forests are key components of urban ecosystems. Accurate, high-resolution data on forest structural attributes are essential for effective management. This study evaluates the efficiency of unmanned laser scanning systems (ULS) and terrestrial LiDAR (TLS) in deriving key tree attributes, diameter at [...] Read more.
Urban mediterranean forests are key components of urban ecosystems. Accurate, high-resolution data on forest structural attributes are essential for effective management. This study evaluates the efficiency of unmanned laser scanning systems (ULS) and terrestrial LiDAR (TLS) in deriving key tree attributes, diameter at breast height (DBH) and tree height, within a small urban park in Zadar, Croatia. Accuracy assessment of the ULS and TLS-derived DBH was conducted based on traditional ground-based measurement (TGBM) data. For ULS, an automatic Spatix workflow was applied that classified points into a Tree class, segmented trees using trunk-based logic, and estimated DBH by fitting a circle to a 1.3 m slice; tree height was computed from the ground-normalized cloud with the Output Tree Cells tool. A semi-automatic CloudCompare/ArcMap workflow used CSF ground filtering, Connected Components segmentation, extraction of a 10 cm slice, manual trunk vectorization, and DBH calculation via Minimum Bounding Geometry. TLS scans, processed in FARO SCENE, were then analyzed in Spatix using the same automatic trunk-fitting procedure to derive DBH and height. Accuracy for DBH was evaluated against TGBM; comparative performance was summarized with standard error metrics, while ULS and TLS tree heights were compared using Concordance Correlation Coefficient (CCC) and Bland–Altman statistics. Results indicate that the semi-automatic approach outperformed the automatic approach in deriving DBH. TLS-derived DBH values demonstrated higher consistency and agreement with TGBM, as evidenced by their strong linear correlation, minimal bias, and narrow residual spread, while ULS exhibited greater variability and systematic deviation. Tree height comparisons between ULS and TLS revealed that ULS consistently produced slightly higher and more uniform measurements. This study highlights limitations in the evaluated techniques and proposes a hybrid approach combining ULS scanning with personal laser scanning (PLS) systems to enhance data accuracy in urban forest assessments. Full article
Show Figures

Figure 1

24 pages, 8595 KB  
Article
Integrated Geomatic Approaches for the 3D Documentation and Analysis of the Church of Saint Andrew in Orani, Sardinia
by Giuseppina Vacca and Enrica Vecchi
Remote Sens. 2025, 17(19), 3376; https://doi.org/10.3390/rs17193376 - 7 Oct 2025
Viewed by 452
Abstract
Documenting cultural heritage sites through 3D reconstruction is crucial and can be accomplished using various geomatic techniques, such as Terrestrial Laser Scanners (TLS), Close-Range Photogrammetry (CRP), and UAV photogrammetry. Each method comes with different levels of complexity, accuracy, field times, post-processing requirements, and [...] Read more.
Documenting cultural heritage sites through 3D reconstruction is crucial and can be accomplished using various geomatic techniques, such as Terrestrial Laser Scanners (TLS), Close-Range Photogrammetry (CRP), and UAV photogrammetry. Each method comes with different levels of complexity, accuracy, field times, post-processing requirements, and costs, making them suitable for different types of restitutions. Recently, research has increasingly focused on user-friendly and faster techniques, while also considering the cost–benefit balance between accuracy, times, and costs. In this scenario, photogrammetry using images captured with 360-degree cameras and LiDAR sensors integrated into Apple devices have gained significant popularity. This study proposes the application of various techniques for the geometric reconstruction of a complex cultural heritage site, the Church of Saint Andrew in Orani, Sardinia. Datasets acquired from different geomatic techniques have been evaluated in terms of quality and usability for documenting various aspects of the site. The TLS provided an accurate model of both the interior and exterior of the church, serving as the ground truth for the validation process. UAV photogrammetry offered a broader view of the exterior, while panoramic photogrammetry from 360° camera was applied to survey the bell tower’s interior. Additionally, CRP and Apple LiDAR were compared in the context of a detailed survey. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

38 pages, 24535 KB  
Article
Time-Series 3D Modeling of Tunnel Damage Through Fusion of Image and Point Cloud Data
by Chulhee Lee, Donggyou Kim, Dongku Kim and Joonoh Kang
Remote Sens. 2025, 17(18), 3173; https://doi.org/10.3390/rs17183173 - 12 Sep 2025
Viewed by 766
Abstract
Precise maintenance is vital for ensuring the safety of tunnel structures; however, traditional visual inspections are subjective and hazardous. Digital technologies such as LiDAR and imaging offer promising alternatives, but each has complementary limitations in geometric precision and visual representation. This study addresses [...] Read more.
Precise maintenance is vital for ensuring the safety of tunnel structures; however, traditional visual inspections are subjective and hazardous. Digital technologies such as LiDAR and imaging offer promising alternatives, but each has complementary limitations in geometric precision and visual representation. This study addresses these limitations by developing a three-dimensional modeling framework that integrates image and point cloud data and evaluates its effectiveness. Terrestrial LiDAR and UAV images were acquired three times over a freeze–thaw cycle at an aging, abandoned tunnel. Based on the data obtained, three types of 3D models were constructed: TLS-based, image-based, and fusion-based. A comparative evaluation results showed that the TLS-based model had excellent geometric accuracy but low resolution due to low point density. The image-based model had high density and excellent resolution but low geometric accuracy. In contrast, the fusion-based model achieved the lowest root mean squared error (RMSE), the highest geometric accuracy, and the highest resolution. Time-series analysis further demonstrated that only the fusion-based model could identify the complex damage progression mechanism in which leakage and icicle formation (visual changes) increased the damaged area by 55.8% (as measured by geometric changes). This also enabled quantitative distinction between active damage (leakage, structural damage) and stable-state damage (spalling, efflorescence, cracks). In conclusion, this study empirically demonstrates the necessity of data fusion for comprehensive tunnel condition diagnosis. It provides a benchmark for evaluating 3D modeling techniques in real-world environments and lays the foundation for digital twin development in data-driven preventive maintenance. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

17 pages, 3745 KB  
Article
Photogrammetric and LiDAR Scanning with iPhone 13 Pro: Accuracy, Precision and Field Application on Hazelnut Trees
by Elèna Grobler and Giuseppe Celano
Sensors 2025, 25(18), 5629; https://doi.org/10.3390/s25185629 - 9 Sep 2025
Viewed by 1211
Abstract
Accurate estimation of tree structural and morphological parameters is essential in precision fruit farming, supporting optimised irrigation management, biomass estimation and carbon stock assessment. While traditional field-based measurements remain widely used, they are often time-consuming and subject to operator-induced errors. In recent years, [...] Read more.
Accurate estimation of tree structural and morphological parameters is essential in precision fruit farming, supporting optimised irrigation management, biomass estimation and carbon stock assessment. While traditional field-based measurements remain widely used, they are often time-consuming and subject to operator-induced errors. In recent years, Terrestrial Laser Scanning (TLS) and UAV-based photogrammetry have been successfully employed to generate high-resolution 3D reconstructions of plants; however, their cost and operational constraints limit their scalability in routine field applications. This study investigates the performances of a low-cost, consumer-grade device—the iPhone 13 Pro equipped with an integrated LiDAR sensor and RGB camera—for 3D scanning of fruit tree structures. Cylindrical targets with known geometric dimensions were scanned using both the LiDAR and photogrammetric (Photo) modes of the Polycam© application, with accuracy and precision assessed by comparing extracted measurements to reference values. Field applicability was also tested on hazelnut trees, assessing height, stem diameter and leaf area: the Photo mode delivered the highest accuracy (systematic error of 0.007 m and R2 = 0.99) and strong agreement with manual leaf measurements (R2 = 0.93). These results demonstrate that smartphone-based 3D scanning can provide a practical, low-cost approach for structural characterisation in fruit orchards, supporting more efficient crop monitoring. Full article
Show Figures

Figure 1

25 pages, 12947 KB  
Article
A Comparison of Tree Segmentation Methods for Savanna Tree Extraction from TLS Point Clouds
by Tasiyiwa Priscilla Muumbe, Pasi Raumonen, Jussi Baade, Corli Coetsee, Jenia Singh and Christiane Schmullius
Land 2025, 14(9), 1761; https://doi.org/10.3390/land14091761 - 30 Aug 2025
Viewed by 848
Abstract
Detecting trees accurately from terrestrial laser scanning (TLS) point clouds is crucial for processing terrestrial LiDAR data in individual tree analyses. Due to the heterogeneity of savanna ecosystems, our understanding of how various segmentation methods perform on savanna trees remains limited. Therefore, we [...] Read more.
Detecting trees accurately from terrestrial laser scanning (TLS) point clouds is crucial for processing terrestrial LiDAR data in individual tree analyses. Due to the heterogeneity of savanna ecosystems, our understanding of how various segmentation methods perform on savanna trees remains limited. Therefore, we compared two segmentation algorithms based on the ecological theory of resource distribution, which enables the prediction of the branching geometry of plants. This approach suggests that the shortest path along the vegetation from a point on the tree to the ground remains within the same tree. The algorithms were tested on a 15.2 ha plot scanned at 0.025° resolution during the dry season, using a Riegl VZ1000 Terrestrial Laser Scanner (TLS) in October 2019 at the Skukuza Flux Tower in Kruger National Park, South Africa. Individual tree segmentation was performed on the cloud using the comparative shortest-path (CSP) algorithm, implemented in LiDAR 360 (v 5.4), and the shortest path-based tree isolation method (SPBTIM), implemented in MATLAB (R2022a). The accuracy of each segmentation method was validated using 125 trees that were segmented and manually edited. Results were evaluated using recall (r), precision (p), and the F-score (F). Both algorithms detected (recall) 90% of the trees. The SPBTIM achieved a precision of 91%, slightly higher than the CSP’s 90%. Overall, both methods demonstrated an F-score of 0.90, indicating equal segmentation accuracy. Our findings suggest that both techniques can reliably segment savanna trees, with no significant difference between them in practical application. These results provide valuable insights into the suitability of each method for savanna ecosystems, which is essential for ecological monitoring and efficient TLS data processing workflows. Full article
(This article belongs to the Special Issue Observation, Monitoring and Analysis of Savannah Ecosystems)
Show Figures

Figure 1

31 pages, 5985 KB  
Article
Comparing Terrestrial and Mobile Laser Scanning Approaches for Multi-Layer Fuel Load Prediction in the Western United States
by Eugênia Kelly Luciano Batista, Andrew T. Hudak, Jeff W. Atkins, Eben North Broadbent, Kody Melissa Brock, Michael J. Campbell, Nuria Sánchez-López, Monique Bohora Schlickmann, Francisco Mauro, Andres Susaeta, Eric Rowell, Caio Hamamura, Ana Paula Dalla Corte, Inga La Puma, Russell A. Parsons, Benjamin C. Bright, Jason Vogel, Inacio Thomaz Bueno, Gabriel Maximo da Silva, Carine Klauberg, Jinyi Xia, Jessie F. Eastburn, Kleydson Diego Rocha and Carlos Alberto Silvaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(16), 2757; https://doi.org/10.3390/rs17162757 - 8 Aug 2025
Viewed by 915
Abstract
Effective estimation of fuel load is critical for mitigating wildfire risks. Here, we evaluate the performance of mobile laser scanning (MLS) and terrestrial laser scanning (TLS) to estimate fuel loads across multiple vegetation layers. Data were collected in two forest regions: the North [...] Read more.
Effective estimation of fuel load is critical for mitigating wildfire risks. Here, we evaluate the performance of mobile laser scanning (MLS) and terrestrial laser scanning (TLS) to estimate fuel loads across multiple vegetation layers. Data were collected in two forest regions: the North Kaibab (NK) Plateau in Arizona and Monroe Mountain (MM) in Utah. We used random forest models to predict vegetation attributes, evaluating the performance of full models and transferred models using R2, RMSE, and bias. The MLS consistently outperformed the TLS system, particularly for canopy-related attributes and woody biomass components. However, the TLS system showed potential for capturing canopy structure attributes, while offering advantages like operational simplicity, low equipment demands, and ease of deployment in the field, making it a cost-effective alternative for managers without access to more complex and expensive mobile or airborne systems. Our results show that model transferability between NK and MM is highly variable depending on the fuel attributes. Attributes related to canopy biomass showed better transferability, with small losses in predictive accuracy when models were transferred between the two sites. Conversely, surface fuel attributes showed more significant challenges for model transferability, given the difficulty of laser penetration in the lower vegetation layers. In general, models trained in NK and validated in MM consistently outperformed those trained in MM and transferred to NK. This may suggest that the NK plots captured a broader complexity of vegetation structure and environmental conditions from which models learned better and were able to generalize to MM. This study highlights the potential of ground-based LiDAR technologies in providing detailed information and important insights into fire risk and forest structure. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

18 pages, 3178 KB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 896
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Graphical abstract

50 pages, 28354 KB  
Article
Mobile Mapping Approach to Apply Innovative Approaches for Real Estate Asset Management: A Case Study
by Giorgio P. M. Vassena
Appl. Sci. 2025, 15(14), 7638; https://doi.org/10.3390/app15147638 - 8 Jul 2025
Cited by 1 | Viewed by 1498
Abstract
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both [...] Read more.
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both in their static (TLS—terrestrial laser scanner) and dynamic (iMMS—indoor mobile mapping system) implementations. Operators and developers of LiDAR technologies, for the implementation of scan-to-BIM procedures, initially placed particular care on the 3D surveying accuracy obtainable from such tools. The incorporation of RGB sensors into these instruments has progressively expanded LiDAR-based applications from essential topographic surveying to geospatial applications, where the emphasis is no longer on the accurate three-dimensional reconstruction of buildings but on the capability to create three-dimensional image-based visualizations, such as virtual tours, which allow the recognition of assets located in every area of the buildings. Although much has been written about obtaining the best possible accuracy for extensive asset surveying of large-scale building complexes using iMMS systems, it is now essential to develop and define suitable procedures for controlling such kinds of surveying, targeted at specific geospatial applications. We especially address the design, field acquisition, quality control, and mass data management techniques that might be used in such complex environments. This work aims to contribute by defining the technical specifications for the implementation of geospatial mapping of vast asset survey activities involving significant building sites utilizing iMMS instrumentation. Three-dimensional models can also facilitate virtual tours, enable local measurements inside rooms, and particularly support the subsequent integration of self-locating image-based technologies that can efficiently perform field updates of surveyed databases. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 3618 KB  
Article
Comparison of Advanced Terrestrial and Aerial Remote Sensing Methods for Above-Ground Carbon Stock Estimation—A Comparative Case Study for a Hungarian Temperate Forest
by Botond Szász, Bálint Heil, Gábor Kovács, Diána Mészáros and Kornél Czimber
Remote Sens. 2025, 17(13), 2173; https://doi.org/10.3390/rs17132173 - 25 Jun 2025
Viewed by 848
Abstract
The increasing pace of climate-driven changes in forest ecosystems calls for reliable remote sensing techniques for quantifying above-ground carbon storage. In this article, we compare the methodology and results of traditional field surveys, mobile laser scanning, optical drone imaging and photogrammetry, and both [...] Read more.
The increasing pace of climate-driven changes in forest ecosystems calls for reliable remote sensing techniques for quantifying above-ground carbon storage. In this article, we compare the methodology and results of traditional field surveys, mobile laser scanning, optical drone imaging and photogrammetry, and both drone-based and light aircraft-based aerial laser scanning to determine forest stand parameters, which are suitable to estimate carbon stock. Measurements were conducted at four designated sampling points established during a large-scale project in deciduous and coniferous tree stands of the Dudles Forest, Hungary. The results of the surveys were first compared spatially and quantitatively, followed by a summary of the advantages and disadvantages of each method. The mobile laser scanner proved to be the most accurate, while optical surveying—enhanced with a new diameter measurement methodology based on detecting stem positions from the photogrammetric point cloud and measuring the diameter directly on the orthorectified images—also delivered promising results. Aerial laser scanning was the least accurate but provided coverage over large areas. Based on the results, we recommend adapting our carbon stock estimation methodology primarily to mobile laser scanning surveys combined with aerial laser scanned data. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

15 pages, 3092 KB  
Article
Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas
by María Teresa González-Moreno and Jesús Rodrigo-Comino
Drones 2025, 9(6), 441; https://doi.org/10.3390/drones9060441 - 16 Jun 2025
Cited by 1 | Viewed by 872
Abstract
The use of UAVs for analyzing soil degradation processes, particularly erosion, has become a crucial tool in environmental monitoring. However, the use of LiDAR (Light Detection and Ranging) or TLS (Terrestrial Lasser Scanner) may not be affordable for many researchers because of the [...] Read more.
The use of UAVs for analyzing soil degradation processes, particularly erosion, has become a crucial tool in environmental monitoring. However, the use of LiDAR (Light Detection and Ranging) or TLS (Terrestrial Lasser Scanner) may not be affordable for many researchers because of the elevated costs and difficulties for cloud processing to present a valuable option for rapid landscape assessment following extreme events like Mediterranean storms. This study focuses on the application of drone-based remote sensing with only an RGB camera in geomorphological mapping. A key objective is the removal of vegetation from imagery to enhance the analysis of erosion and sediment transport dynamics. The research was carried out over a cereal cultivation plot in Málaga Province, an area recently affected by high-intensity rainfalls exceeding 100 mm in a single day in the past year, which triggered significant soil displacement. By processing UAV-derived data, a Digital Elevation Model (DEM) was generated through geostatistical techniques, refining the Digital Surface Model (DSM) to improve topographical change detection. The ability to accurately remove vegetation from aerial imagery allows for a more precise assessment of erosion patterns and sediment redistribution in geomorphological features with rapid spatiotemporal changes. Full article
Show Figures

Figure 1

19 pages, 4165 KB  
Article
Tree Trunk Curvature Extraction Based on Terrestrial Laser Scanning Point Clouds
by Chenxin Fan, Yizhou Lan and Feizhou Zhang
Forests 2025, 16(5), 797; https://doi.org/10.3390/f16050797 - 9 May 2025
Cited by 2 | Viewed by 760
Abstract
The degree of tree curvature exerts a significant influence on the utilization of forestry resources. This study proposes an enhanced quantitative structural modeling (QSM) method, founded upon terrestrial laser scanning (TLS) point cloud data, for the precise extraction of 3D curvature characteristics of [...] Read more.
The degree of tree curvature exerts a significant influence on the utilization of forestry resources. This study proposes an enhanced quantitative structural modeling (QSM) method, founded upon terrestrial laser scanning (TLS) point cloud data, for the precise extraction of 3D curvature characteristics of tree trunks. The conventional approach operates under the assumption that the tree trunk constitutes an upright rotating body, thereby disregarding the tree trunk’s true curvature morphology. The proposed method is founded on the classical QSM algorithm and introduces two zoom factors that can dynamically adjust the fitting parameters. This improvement leads to enhanced accuracy in the representation of tree trunk curvature and reduced computational complexity. The study utilized 146 sample trees from 13 plots in Jixi, Anhui Province, which were collected and pre-processed by TLS. The study combines point cloud segmentation, manual labeling of actual curvature and dual-factor experiments, and uses quadratic polynomials and simulated annealing algorithms to determine the optimal model factors. The validation results demonstrate that the enhanced method exhibits a greater degree of concordance between the predicted and actual curvature values within the validation set. In the regression equation, the coefficient of the two-factor method for fitting a straight line is 0.95, which is substantially higher than the 0.75 of the one-factor method. Furthermore, the two-factor model has an R2 of 0.21, indicating that the two-factor optimization method generates a significantly smaller error compared to the one-factor model (with an R2 of 0.12). In addition, this study discusses the possible reasons for the error in the results, as well as the shortcomings and outlook. The experimental results demonstrate the augmented method’s capacity to accurately reconstruct the 3D curvature of tree trunks in most cases. This study provides an efficient and accurate method for conducting fine-grained forest resource measurements and tree bending studies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

27 pages, 11161 KB  
Article
Quantifying Tree Structural Change in an African Savanna by Utilizing Multi-Temporal TLS Data
by Tasiyiwa Priscilla Muumbe, Jussi Baade, Pasi Raumonen, Corli Coetsee, Jenia Singh and Christiane Schmullius
Remote Sens. 2025, 17(5), 757; https://doi.org/10.3390/rs17050757 - 22 Feb 2025
Cited by 1 | Viewed by 1113
Abstract
Structural changes in savanna trees vary spatially and temporally because of both biotic and abiotic drivers, as well as the complex interactions between them. Given this complexity, it is essential to monitor and quantify woody structural changes in savannas efficiently. We implemented a [...] Read more.
Structural changes in savanna trees vary spatially and temporally because of both biotic and abiotic drivers, as well as the complex interactions between them. Given this complexity, it is essential to monitor and quantify woody structural changes in savannas efficiently. We implemented a non-destructive approach based on Terrestrial Laser Scanning (TLS) and Quantitative Structure Models (QSMs) that offers the unique advantage of investigating changes in complex tree parameters, such as volume and branch length parameters that have not been previously reported for savanna trees. Leaf-off multi-scan TLS point clouds were acquired during the dry season, using a Riegl VZ1000 TLS, in September 2015 and October 2019 at the Skukuza flux tower in Kruger National Park, South Africa. These three-dimensional (3D) data covered an area of 15.2 ha with an average point density of 4270 points/m2 (0.015°) and 1600 points/m2 (0.025°) for the 2015 and 2019 clouds, respectively. Individual tree segmentation was applied on the two clouds using the comparative shortest-path algorithm in LiDAR 360(v5.4) software. We reconstructed optimized QSMs and assessed tree structural parameters such as Diameter at Breast Height (DBH), tree height, crown area, volume, and branch length at individual tree level. The DBH, tree height, crown area, and trunk volume showed significant positive correlations (R2 > 0.80) between scanning periods regardless of the difference in the number of points of the matched trees. The opposite was observed for total and branch volume, total number of branches, and 1st-order branch length. As the difference in the point densities increased, the difference in the computed parameters also increased (R2 < 0.63) for a high relative difference. A total of 45% of the trees present in 2015 were identified in 2019 as damaged/felled (75 trees), and the volume lost was estimated to be 83.4 m3. The results of our study showed that volume reconstruction algorithms such as TreeQSMs and high-resolution TLS datasets can be used successfully to quantify changes in the structure of savanna trees. The results of this study are key in understanding savanna ecology given its complex and dynamic nature and accurately quantifying the gains and losses that could arise from fire, drought, herbivory, and other abiotic and biotic disturbances. Full article
(This article belongs to the Special Issue Remote Sensing of Savannas and Woodlands II)
Show Figures

Figure 1

26 pages, 93658 KB  
Article
Sustainable Digital Innovation for Regional Museums Through Cost-Effective Digital Reconstruction and Exhibition Co-Design: A Case Study of the Ryushi Memorial Museum
by Yaotian Ai, Xinru Zhu and Kayoko Nohara
Sustainability 2025, 17(4), 1598; https://doi.org/10.3390/su17041598 - 14 Feb 2025
Viewed by 3476
Abstract
While national museums focus on broader national narratives, regional museums function as vital community hubs, establishing deeper local connections and facilitating intimate interactions between local residents and their heritage. These regional museums face dual challenges in their sustainable digital transformation, including the following: [...] Read more.
While national museums focus on broader national narratives, regional museums function as vital community hubs, establishing deeper local connections and facilitating intimate interactions between local residents and their heritage. These regional museums face dual challenges in their sustainable digital transformation, including the following: technical barriers arising from the high costs of traditional digitization methods like Terrestrial Laser Scanning (TLS) and humanistic challenges, including preserving distinctive multi-directional communication and balancing professionalism and authority with collaborative community engagement in the digitization process. This study addresses these challenges through a case study of the Ryushi Memorial Museum in Ota City, Tokyo. We present a comprehensive approach that integrates technical innovation with community engagement, including the following: (1) A cost-effective workflow combining photogrammetry with iPad LiDAR technology for spatial reconstruction, demonstrated through the digital reconstruction of the museum’s Atelier and Jibutsudo (family hall for worshipping Buddha); (2) a new Exhibition Co-Design framework that co-ordinates diverse stakeholders to create digital exhibitions while balancing professional guidance with community participation. Through questionnaire surveys and semi-structured interviews with museum volunteers, we demonstrate how this approach enhances community engagement by enabling volunteers to incorporate their local knowledge into digital exhibitions while maintaining professionalism and authority. This cost-effective model for spatial reconstruction and community-driven digital design can serve as a reference for other regional museums to help them achieve sustainable digital innovation in the digital age. Full article
(This article belongs to the Special Issue Cultural Heritage Conservation and Sustainable Development)
Show Figures

Figure 1

44 pages, 24354 KB  
Article
Estimating Subcanopy Solar Radiation Using Point Clouds and GIS-Based Solar Radiation Models
by Daniela Buchalová, Jaroslav Hofierka, Jozef Šupinský and Ján Kaňuk
Remote Sens. 2025, 17(2), 328; https://doi.org/10.3390/rs17020328 - 18 Jan 2025
Cited by 3 | Viewed by 1662
Abstract
This study explores advanced methodologies for estimating subcanopy solar radiation using LiDAR (Light Detection and Ranging)-derived point clouds and GIS (Geographic Information System)-based models, with a focus on evaluating the impact of different LiDAR data types on model performance. The research compares the [...] Read more.
This study explores advanced methodologies for estimating subcanopy solar radiation using LiDAR (Light Detection and Ranging)-derived point clouds and GIS (Geographic Information System)-based models, with a focus on evaluating the impact of different LiDAR data types on model performance. The research compares the performance of two modeling approaches—r.sun and the Point Cloud Solar Radiation Tool (PCSRT)—in capturing solar radiation dynamics beneath tree canopies. The models were applied to two contrasting environments: a forested area and a built-up area. The r.sun model, based on raster data, and the PCSRT model, which uses voxelized point clouds, were evaluated for their accuracy and efficiency in simulating solar radiation. Data were collected using terrestrial laser scanning (TLS), unmanned laser scanning (ULS), and aerial laser scanning (ALS) to capture the structural complexity of canopies. Results indicate that the choice of LiDAR data significantly affects model outputs. PCSRT, with its voxel-based approach, provides higher precision in heterogeneous forest environments. Among the LiDAR types, ULS data provided the most accurate solar radiation estimates, closely matching in situ pyranometer measurements, due to its high-resolution coverage of canopy structures. TLS offered detailed local data but was limited in spatial extent, while ALS, despite its broader coverage, showed lower precision due to insufficient point density under dense canopies. These findings underscore the importance of selecting appropriate LiDAR data for modeling solar radiation, particularly in complex environments. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

Back to TopTop