Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = Suomi NPP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7662 KiB  
Article
Pre-Launch Day-Night Band Radiometric Performance of JPSS-3 and -4 VIIRS
by Daniel Link, Thomas Schwarting, Amit Angal and Xiaoxiong Xiong
Remote Sens. 2025, 17(7), 1111; https://doi.org/10.3390/rs17071111 - 21 Mar 2025
Cited by 1 | Viewed by 410
Abstract
Following the success of Visible Infrared Imaging Radiometer Suite (VIIRS) instruments currently operating onboard the Suomi-NPP, NOAA-20, and NOAA-21 spacecraft, preparations are underway for the final two VIIRS instruments for the Joint Polar Satellite System 3 (JPSS-3) and 4 (JPSS-4) platforms. To that [...] Read more.
Following the success of Visible Infrared Imaging Radiometer Suite (VIIRS) instruments currently operating onboard the Suomi-NPP, NOAA-20, and NOAA-21 spacecraft, preparations are underway for the final two VIIRS instruments for the Joint Polar Satellite System 3 (JPSS-3) and 4 (JPSS-4) platforms. To that end, each instrument underwent a comprehensive sensor-level test campaign at the Raytheon Technologies, El Segundo facility, in both ambient and thermal-vacuum environments. Unique among the 22 VIIRS sensing bands is the day-night band (DNB)—a panchromatic imager that leverages multiple CCD detectors set at different gain levels to make continuous (day and night) radiometric observations of the Earth. The results from the JPSS-3 and JPSS-4 VIIRS DNB pre-launch testing are presented and compared against the design specifications in this paper. Characterization parameters include dark offset, gain, linearity, uniformity, SNR, and uncertainty. Performance relative to past builds is also included where appropriate. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

20 pages, 7144 KiB  
Article
A Study of NOAA-20 VIIRS Band M1 (0.41 µm) Striping over Clear-Sky Ocean
by Wenhui Wang, Changyong Cao, Slawomir Blonski and Xi Shao
Remote Sens. 2025, 17(1), 74; https://doi.org/10.3390/rs17010074 - 28 Dec 2024
Cited by 3 | Viewed by 860
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite was launched on 18 November 2017. The on-orbit calibration of the NOAA-20 VIIRS visible and near-infrared (VisNIR) bands has been very stable over time. However, NOAA-20 operational [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite was launched on 18 November 2017. The on-orbit calibration of the NOAA-20 VIIRS visible and near-infrared (VisNIR) bands has been very stable over time. However, NOAA-20 operational M1 (a dual gain band with a center wavelength of 0.41 µm) sensor data records (SDR) have exhibited persistent scene-dependent striping over clear-sky ocean (high gain, low radiance) since the beginning of the mission, different from other VisNIR bands. This paper studies the root causes of the striping in the operational NOAA-20 M1 SDRs. Two potential factors were analyzed: (1) polarization effect-induced striping over clear-sky ocean and (2) imperfect on-orbit radiometric calibration-induced striping. NOAA-20 M1 is more sensitive to the polarized lights compared to other NOAA-20 short-wavelength bands and the similar bands on the Suomi NPP and NOAA-21 VIIRS, with detector and scan angle-dependent polarization sensitivity up to ~6.4%. The VIIRS M1 top of atmosphere radiance is dominated by Rayleigh scattering over clear-sky ocean and can be up to ~70% polarized. In this study, the impact of the polarization effect on M1 striping was investigated using radiative transfer simulation and a polarization correction method similar to that developed by the NOAA ocean color team. Our results indicate that the prelaunch-measured polarization sensitivity and the polarization correction method work well and can effectively reduce striping over clear-sky ocean scenes by up to ~2% at near nadir zones. Moreover, no significant change in NOAA-20 M1 polarization sensitivity was observed based on the data analyzed in this study. After the correction of the polarization effect, residual M1 striping over clear-sky ocean suggests that there exists half-angle mirror (HAM)-side and detector-dependent striping, which may be caused by on-orbit radiometric calibration errors. HAM-side and detector-dependent striping correction factors were analyzed using deep convective cloud (DCC) observations (low gain, high radiances) and verified over the homogeneous Libya-4 desert site (low gain, mid-level radiance); neither are significantly affected by the polarization effect. The imperfect on-orbit radiometric calibration-induced striping in the NOAA operational M1 SDR has been relatively stable over time. After the correction of the polarization effect, the DCC-based striping correction factors can further reduce striping over clear-sky ocean scenes by ~0.5%. The polarization correction method used in this study is only effective over clear-sky ocean scenes that are dominated by the Rayleigh scattering radiance. The DCC-based striping correction factors work well at all radiance levels; therefore, they can be deployed operationally to improve the quality of NOAA-20 M1 SDRs. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

27 pages, 14376 KiB  
Article
Investigating Synoptic Influences on Tropospheric Volcanic Ash Dispersion from the 2015 Calbuco Eruption Using WRF-Chem Simulations and Satellite Data
by Douglas Lima de Bem, Vagner Anabor, Franciano Scremin Puhales, Damaris Kirsch Pinheiro, Fabio Grasso, Luiz Angelo Steffenel, Leonardo Brenner and Umberto Rizza
Remote Sens. 2024, 16(23), 4455; https://doi.org/10.3390/rs16234455 - 27 Nov 2024
Viewed by 1141
Abstract
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and [...] Read more.
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and surface data. Numerical simulations with the coupled Weather Research and Forecasting–Chemistry (WRF-Chem) model from 22 to 27 April covered eruptions and particle propagation. Chemical and aerosol parameters utilized the GOCART (Goddard Chemistry Aerosol Radiation and Transport) model, while the meteorological conditions came from NCEP-FNL reanalysis. In WRF-Chem, we implemented a more efficient methodology to determine the Eruption Source Parameters (ESP). This permitted each simulation to consider a sequence of eruptions and a time varying ESP, such as the eruption height and mass and the SO2 eruption rate. We used two simulations (GCTS1 and GCTS2) differing in the ash mass fraction in the finest bins (0–15.6 µm) by 2.4% and 16.5%, respectively, to assess model efficiency in representing plume intensity and propagation. Analysis of the active synoptic components revealed their impact on particle transport and the Andes’ role as a natural barrier. We evaluated and compared the simulated Aerosol Optical Depth (AOD) with VIIRS Deep Blue Level 3 data and SO2 data from Ozone Mapper and Profiler Suite (OMPS) Limb Profiler (LP), both of which are sensors onboard the Suomi National Polar Partnership (NPP) spacecraft. The model successfully reproduced ash and SO2 transport, effectively representing influencing synoptic systems. Both simulations showed similar propagation patterns, with GCTS1 yielding better results when compared with AOD retrievals. These results indicate the necessity of specifying lower mass fraction in the finest bins. Comparison with VIIRS Brightness Temperature Difference data confirmed the model’s efficiency in representing particle transport. Overestimation of SO2 may stem from emission inputs. This study demonstrates the feasibility of our implementation of the WRF-Chem model to reproduce ash and SO2 patterns after a multi-eruption event. This enables further studies into aerosol–radiation and aerosol–cloud interactions and atmospheric behavior following volcanic eruptions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Limb Temperature Observations in the Stratosphere and Mesosphere Derived from the OMPS Sensor
by Pedro Da Costa Louro, Philippe Keckhut, Alain Hauchecorne, Mustapha Meftah, Glen Jaross and Antoine Mangin
Remote Sens. 2024, 16(20), 3878; https://doi.org/10.3390/rs16203878 - 18 Oct 2024
Viewed by 1380
Abstract
Molecular scattering (Rayleigh scattering) has been extensively used from the ground with lidars and from space to observe the limb, thereby deriving vertical temperature profiles between 30 and 80 km. In this study, we investigate how temperature can be measured using the new [...] Read more.
Molecular scattering (Rayleigh scattering) has been extensively used from the ground with lidars and from space to observe the limb, thereby deriving vertical temperature profiles between 30 and 80 km. In this study, we investigate how temperature can be measured using the new Ozone Mapping and Profiler Suite (OMPS) sensor, aboard the Suomi NPP and NOAA-21 satellites. The OMPS consists of three instruments whose main purpose is to study the composition of the stratosphere. One of these, the Limb Profiler (LP), measures the radiance of the limb of the middle atmosphere (stratosphere and mesosphere, 12 to 90 km altitude) at wavelengths from 290 to 1020 nm. This new data set has been used with a New Simplified Radiative Transfer Model (NSRTM) to derive temperature profiles with a vertical resolution of 1 km. To validate the method, the OMPS-derived temperature profiles were compared with data from four ground-based lidars and the ERA5 and MSIS models. The results show that OMPS and the lidars are in agreement within a range of about 5 K from 30 to 80 km. Comparisons with the models also show similar results, except for ERA5 beyond 50 km. We investigated various sources of bias, such as different attenuation sources, which can produce errors of up to 120 K in the UV range, instrumental errors around 0.8 K and noise problems of up to 150 K in the visible range for OMPS. This study also highlighted the interest in developing a new miniaturised instrument that could provide real-time observation of atmospheric vertical temperature profiles using a constellation of CubeSats with our NSRTM. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

22 pages, 10559 KiB  
Article
Development of an Algorithm for Assessing the Scope of Large Forest Fire Using VIIRS-Based Data and Machine Learning
by Min-Woo Son, Chang-Gyun Kim and Byung-Sik Kim
Remote Sens. 2024, 16(14), 2667; https://doi.org/10.3390/rs16142667 - 21 Jul 2024
Cited by 5 | Viewed by 2538
Abstract
Forest fires pose a multifaceted threat, encompassing human lives and property loss, forest resource destruction, and toxic gas release. This crucial disaster’s global occurrence and impact have risen in recent years, primarily driven by climate change. Hence, the scope and frequency of forest [...] Read more.
Forest fires pose a multifaceted threat, encompassing human lives and property loss, forest resource destruction, and toxic gas release. This crucial disaster’s global occurrence and impact have risen in recent years, primarily driven by climate change. Hence, the scope and frequency of forest fires must be collected to establish disaster prevention policies and conduct relevant research projects. However, some countries do not share details, including the location of forest fires, which can make research problematic when it is necessary to know the exact location or shape of a forest fire. This non-disclosure warrants remote surveys of forest fire sites using satellites, which sidestep national information disclosure policies. Meanwhile, original data from satellites have a great advantage in terms of data acquisition in that they are independent of national information disclosure policies, making them the most effective method that can be used for environmental monitoring and disaster monitoring. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-Orbiting Partnership (NPP) satellite has worldwide coverage at a daily temporal resolution and spatial resolution of 375 m. It is widely used for detecting hotspots worldwide, enabling the recognition of forest fires and affected areas. However, information collection on affected regions and durations based on raw data necessitates identifying and filtering hotspots caused by industrial activities. Therefore, this study used VIIRS hotspot data collected over long periods and the Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN) algorithm to develop ST-MASK, which masks said hotspots. By targeting the concentrated and fixed nature of these hotspots, ST-MASK is developed and used to distinguish forest fires from other hotspots, even in mountainous areas, and through an outlier detection algorithm, it generates identified forest fire areas, which will ultimately allow for the creation of a global forest fire watch system. Full article
Show Figures

Figure 1

24 pages, 8043 KiB  
Article
Pre-Launch Polarization Assessment of JPSS-3 and -4 VIIRS VNIR Bands and Comparison with Previous Builds
by David Moyer, Jeff McIntire, Amit Angal and Xiaoxiong Xiong
Remote Sens. 2024, 16(12), 2178; https://doi.org/10.3390/rs16122178 - 15 Jun 2024
Cited by 3 | Viewed by 1207
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, deployed on multiple satellites including the Suomi National Polar-orbiting Partnership (S-NPP), National Oceanic and Atmospheric Administration 20 (NOAA-20), NOAA-21, Joint Polar Satellite System (JPSS-3), and JPSS-4 spacecraft, with launches in 2011, 2017, 2022, 2032, and [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, deployed on multiple satellites including the Suomi National Polar-orbiting Partnership (S-NPP), National Oceanic and Atmospheric Administration 20 (NOAA-20), NOAA-21, Joint Polar Satellite System (JPSS-3), and JPSS-4 spacecraft, with launches in 2011, 2017, 2022, 2032, and 2027, respectively, has polarization sensitivity that affects the at-aperture radiometric Sensor Data Record (SDR) calibration in the Visible Near InfraRed (VNIR) spectral region. These SDRs are key inputs into the VIIRS atmospheric, land, and water Environmental Data Records (EDRs) that are integral to weather and climate applications. If the polarization sensitivity of the VIIRS instrument is left uncorrected, EDR quality will degrade, causing diminished quality of weather and climate data. Pre-launch characterization of the instrument’s polarization sensitivity was performed to mitigate this on-orbit calibration effect and improve the quality of the EDRs. Specialized ground test equipment, built specifically for the VIIRS instrument, enabled high-fidelity characterization of the instrument’s polarization performance. This paper will discuss the polarization sensitivity characterization test approach, methodology, and results for the JPSS-3 and -4 builds. This includes a description of the ground test equipment, instrument requirements, and how the testing was executed and analyzed. A comparison of the polarization sensitivity results of the on-orbit S-NPP, NOAA-20, and -21 instruments with the JPSS-3 and -4 VIIRS instruments will be discussed as well. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

27 pages, 2083 KiB  
Article
A Wide-Angle Hyperspectral Top-of-Atmosphere Reflectance Model for the Libyan Desert
by Fuxiang Guo, Xiaobing Zheng, Yanna Zhang, Wei Wei, Zejie Zhang, Quan Zhang and Xin Li
Remote Sens. 2024, 16(8), 1406; https://doi.org/10.3390/rs16081406 - 16 Apr 2024
Cited by 3 | Viewed by 1361
Abstract
Reference targets with stability, uniformity, and known reflectance on the Earth’s surface, such as deserts, can be used for the absolute radiometric calibration of satellite sensors. A wide-angle hyperspectral reflectance model at the top of atmosphere (TOA) over such a reference target will [...] Read more.
Reference targets with stability, uniformity, and known reflectance on the Earth’s surface, such as deserts, can be used for the absolute radiometric calibration of satellite sensors. A wide-angle hyperspectral reflectance model at the top of atmosphere (TOA) over such a reference target will expand the applicability of on-orbit calibration to different spectral bands and angles. To achieve the long-term, continuous, and high-precision absolute radiometric calibration of remote sensors, a wide-angle hyperspectral TOA reflectance model of the Libyan Desert was constructed based on spectral reflectance data, satellite overpass parameters, and atmospheric parameters from the Terra/Aqua and Earth Observation-1 (EO-1) satellites between 2003 and 2012. By means of angle fitting, viewing angle grouping, and spectral extension, the model is applicable for absolute radiometric calibration of the visible to short-wave infrared (SWIR) bands for sensors within viewing zenith angles of 65 degrees. To validate the accuracy and precision of the model, a total of 3120 long-term validations of model accuracy and 949 cross-validations with the Landsat 8 Operational Land Imager (OLI) and Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellite sensors between 2013 and 2020 were conducted. The results show that the TOA reflectance calculated by the model had a standard deviation (SD) of relative differences below 1.9% and a root-mean-square error (RMSE) below 0.8% when compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 OLI. The SD of the relative differences and the RMSE were within 2.7% when predicting VIIRS data. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Graphical abstract

23 pages, 11502 KiB  
Article
Evaluation of VIIRS Thermal Emissive Bands Long-Term Calibration Stability and Inter-Sensor Consistency Using Radiative Transfer Modeling
by Feng Zhang, Xi Shao, Changyong Cao, Yong Chen, Wenhui Wang, Tung-Chang Liu and Xin Jing
Remote Sens. 2024, 16(7), 1271; https://doi.org/10.3390/rs16071271 - 4 Apr 2024
Cited by 3 | Viewed by 1642
Abstract
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS [...] Read more.
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS M TEBs among three satellites (S-NPP, NOAA-20, and NOAA-21) over eight months spanning from 18 March to 30 November 2023. The field of interest is limited to the ocean surface between 60°S and 60°N, specifically under clear-sky conditions. Taking radiative transfer modeling (RTM) as the transfer reference, we employed the Community Radiative Transfer Model (CRTM) to simulate VIIRS TEB brightness temperature (BTs), incorporating European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data as inputs. Our results reveal two key findings. Firstly, the reprocessed S-NPP VIIRS TEBs exhibit a robust long-term stability, as demonstrated through analyses of the observation minus background BT differences (O-B ∆BTs) between VIIRS measurements (O) and CRTM simulations (B). The drifts of the O-B BT differences are consistently less than 0.102 K/Decade across all S-NPP VIIRS M TEB bands. Notably, observations from VIIRS M14 and M16 stand out with drifts well within 0.04 K/Decade, reinforcing their exceptional reliability for climate change studies. Secondly, excellent inter-sensor consistency among these three VIIRS instruments is confirmed through the double-difference analysis method (O-O). This method relies on the O-B BT differences obtained from daily VIIRS operational data. The mean inter-VIIRS O-O BT differences remain within 0.08 K for all M TEBs, except for M13. Even in the case of M13, the O-O BT differences between NOAA-21 and NOAA-20/S-NPP have values of 0.312 K and 0.234 K, respectively, which are comparable to the 0.2 K difference observed in overlapping TEBs between VIIRS and MODIS. These disparities are primarily attributed to the significant differences in the Spectral Response Function (SRF) of NOAA-21 compared to NOAA-20 and S-NPP. It is also found that the remnant scene temperature dependence of NOAA-21 versus NOAA-20/S-NPP M13 O-O BT difference after accounting for SRF difference is ~0.0033 K/K, an order of magnitude smaller than the corresponding rates in the direct BT comparisons between NOAA-21 and NOAA-20/S-NPP. Our study confirms the versatility and effectiveness of the RTM-based TEB quality evaluation method in assessing long-term sensor stability and inter-sensor consistency. The double-difference approach effectively mitigates uncertainties and biases inherent to CRTM simulations, establishing a robust mechanism for assessing inter-sensor consistency. Moreover, for M12 operating as a shortwave infrared channel, it is found that the daytime O-B BT differences of S-NPP M12 exhibit greater seasonal variability compared to the nighttime data, which can be attributed to the idea that M12 radiance is affected by the reflected solar radiation during the daytime. Furthermore, in this study, we’ve also characterized the spatial distributions of inter-VIIRS BT differences, identifying variations among VIIRS M TEBs, as well as spatial discrepancies between the daytime and nighttime data. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

17 pages, 6407 KiB  
Article
Random Forest Classifier for Cloud Clearing of the Operational TROPOMI XCH4 Product
by Tobias Borsdorff, Mari C. Martinez-Velarte, Maarten Sneep, Mark ter Linden and Jochen Landgraf
Remote Sens. 2024, 16(7), 1208; https://doi.org/10.3390/rs16071208 - 29 Mar 2024
Cited by 2 | Viewed by 1871
Abstract
The TROPOMI XCH4 data product requires rigorous cloud filtering to achieve a product accuracy of <1%. To this end, operational XCH4 data processing has been based on SUOMI-NPP VIIRS cloud observations. However, SUOMI-NPP is nearing the end of its operational life [...] Read more.
The TROPOMI XCH4 data product requires rigorous cloud filtering to achieve a product accuracy of <1%. To this end, operational XCH4 data processing has been based on SUOMI-NPP VIIRS cloud observations. However, SUOMI-NPP is nearing the end of its operational life and has encountered malfunctions in 2022 and 2023. In this study, we introduce a novel machine learning cloud-clearing approach based on a random forest classifier (RFC). The RFC is trained on collocated TROPOMI and SUOMI-NPP VIIRS data to emulate VIIRS-like cloud clearing. After training, cloud masking requires only TROPOMI data, and so becomes operationally independent of SUOMI-NPP. We demonstrate the RFC approach by applying cloud clearing to operational TROPOMI XCH4 data for August 2022, a period in which VIIRS was not operational. For validation, we analyze the TROPOMI XCH4 data at 12 TCCON stations. Comparison of cloud clearing using the RFC and the original VIIRS method reveals excellent agreement with a similar station-to-station bias (−7.4 ppb versus −5.6 ppb), a similar standard deviation of the station-to-station bias (11.6 ppb versus 12 ppb), and the same Pearson correlation coefficient of 0.9. Remarkably, the RFC cloud clearing provides a slightly higher volume of data (2182 versus 2035 daily means) and appears to have fewer outliers. Since 21 November 2023, the RFC approach is part of the operational processing chain of the European Space Agency (ESA). For now, the default practice is to utilize SNPP-VIIRS when accessible. Only in cases where VIIRS data are unavailable do we resort to the RFC cloud mask. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

22 pages, 15243 KiB  
Article
Light-Pollution-Monitoring Method for Selected Environmental and Social Elements
by Justyna Górniak-Zimroz, Kinga Romańczukiewicz, Magdalena Sitarska and Aleksandra Szrek
Remote Sens. 2024, 16(5), 774; https://doi.org/10.3390/rs16050774 - 22 Feb 2024
Cited by 4 | Viewed by 4025
Abstract
Light pollution significantly interferes with animal and human life and should, therefore, be included in the factors that threaten ecosystems. The main aim of this research is to develop a methodology for monitoring environmental and social elements subjected to light pollution in anthropogenic [...] Read more.
Light pollution significantly interferes with animal and human life and should, therefore, be included in the factors that threaten ecosystems. The main aim of this research is to develop a methodology for monitoring environmental and social elements subjected to light pollution in anthropogenic areas. This research is based on yearly and monthly photographs acquired from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite; land cover data from the CORINE Land Cover (CLC) program; and environmental data from the European Environment Agency (EEA) and the World Database on Protected Areas (WDPA). The processing of input data for further analyses, the testing of the methodology and the interpretation of the final results were performed in GIS-type software (ArcGIS Pro). Light pollution in the investigated area was analyzed with the use of maps generated for the years 2014 and 2019. The environmental and social elements were spatially identified in five light pollution classes. The research results demonstrate that the proposed methodology allows for the identification of environmental and social elements that emit light, as well as those that are subjected to light pollution. The methodology used in this work allows us to observe changes resulting from light pollution (decreasing or increasing the intensity). Owing to the use of publicly available data, the methodology can be applied to light pollution monitoring as part of spatial planning in anthropogenic areas. The proposed methodology makes it possible to cover the area exposed to light pollution and to observe (almost online) the environmental and social changes resulting from reductions in light emitted by anthropogenic areas. Full article
Show Figures

Figure 1

24 pages, 15718 KiB  
Article
The Assessment of Industrial Agglomeration in China Based on NPP-VIIRS Nighttime Light Imagery and POI Data
by Zuoqi Chen, Wenxiang Xu and Zhiyuan Zhao
Remote Sens. 2024, 16(2), 417; https://doi.org/10.3390/rs16020417 - 21 Jan 2024
Cited by 10 | Viewed by 2485
Abstract
Industrial agglomeration, as a typical aspect of industrial structures, significantly influences policy development, economic growth, and regional employment. Due to the collection limitations of gross domestic product (GDP) data, the traditional assessment of industrial agglomeration usually focused on a specific field or region. [...] Read more.
Industrial agglomeration, as a typical aspect of industrial structures, significantly influences policy development, economic growth, and regional employment. Due to the collection limitations of gross domestic product (GDP) data, the traditional assessment of industrial agglomeration usually focused on a specific field or region. To better measure industrial agglomeration, we need a new proxy to estimate GDP data for different industries. Currently, nighttime light (NTL) remote sensing data are widely used to estimate GDP at diverse scales. However, since the light intensity from each industry is mixed, NTL data are being adopted less to estimate different industries’ GDP. To address this, we selected an optimized model from the Gaussian process regression model and random forest model to combine Suomi National Polar-Orbiting Partnership—Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data and points-of-interest (POI) data, and successfully estimated the GDP of eight major industries in China for 2018 with an accuracy (R2) higher than 0.80. By employing the location quotient to measure industrial agglomeration, we found that a dominated industry had an obvious spatial heterogeneity. The central and eastern regions showed a developmental focus on industry and retail as local strengths. Conversely, many western cities emphasized construction and transportation. First-tier cities prioritized high-value industries like finance and estate, while cities rich in tourism resources aimed to enhance their lodging and catering industries. Generally, our proposed method can effectively measure the detailed industry agglomeration and can enhance future urban economic planning. Full article
(This article belongs to the Special Issue Remote Sensing and GIS for Monitoring Urbanization and Urban Health)
Show Figures

Graphical abstract

21 pages, 3539 KiB  
Article
Light Absorption by Optically Active Components in the Arctic Region (August 2020) and the Possibility of Application to Satellite Products for Water Quality Assessment
by Tatiana Efimova, Tatiana Churilova, Elena Skorokhod, Vyacheslav Suslin, Anatoly S. Buchelnikov, Dmitry Glukhovets, Aleksandr Khrapko and Natalia Moiseeva
Remote Sens. 2023, 15(17), 4346; https://doi.org/10.3390/rs15174346 - 4 Sep 2023
Cited by 6 | Viewed by 1868
Abstract
In August 2020, during the 80th cruise of the R/V “Akademik Mstislav Keldysh”, the chlorophyll a concentration (Chl-a) and spectral coefficients of light absorption by phytoplankton pigments, non-algal particles (NAP) and colored dissolved organic matter (CDOM) were measured in the Norwegian [...] Read more.
In August 2020, during the 80th cruise of the R/V “Akademik Mstislav Keldysh”, the chlorophyll a concentration (Chl-a) and spectral coefficients of light absorption by phytoplankton pigments, non-algal particles (NAP) and colored dissolved organic matter (CDOM) were measured in the Norwegian Sea, the Barents Sea and the adjacent area of the Arctic Ocean. It was shown that the spatial distribution of the three light-absorbing components in the explored Arctic region was non-homogenous. It was revealed that CDOM contributed largely to the total non-water light absorption (atot(λ) = aph(λ) + aNAP(λ) + aCDOM(λ)) in the blue spectral range in the Arctic Ocean and the Barents Sea. The fraction of NAP in the total non-water absorption was low (less than 20%). The depth of the euphotic zone depended on atot(λ) in the surface water layer, which was described by a power equation. The Arctic Ocean, the Norwegian Sea and the Barents Sea did not differ in the Chl-a-specific light absorption coefficients of phytoplankton. In the blue maximum of phytoplankton absorption spectra, Chl-a-specific light absorption coefficients of phytoplankton in the upper mixed layer (UML) were higher than those below the UML. Relationships between phytoplankton absorption coefficients and Chl-a were derived by least squares fitting to power functions for the whole visible domain with a 1 nm interval. The OCI, OC3 and GIOP algorithms were validated using a database of co-located results (day-to-day) of in situ measurements (n = 63) and the ocean color scanner data: the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra (EOS AM) and Aqua (EOS PM) satellites, the Visible and Infrared Imager/Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) and JPSS-1 satellites (also known as NOAA-20), and the Ocean and the Land Color Imager (OLCI) onboard the Sentinel-3A and Sentinel-3B satellites. The comparison showed that despite the technological progress in optical scanners and the algorithms refinement, the considered standard products (chlor_a, chl_ocx, aph_443, adg_443) carried little information about inherent optical properties in Arctic waters. Based on the statistic metrics (Bias, MdAD, MAE and RMSE), it was concluded that refinement of the algorithm for retrieval of water bio-optical properties based on remote sensing data was required for the Arctic region. Full article
Show Figures

Graphical abstract

19 pages, 6502 KiB  
Article
Machine Learning and VIIRS Satellite Retrievals for Skillful Fuel Moisture Content Monitoring in Wildfire Management
by John S. Schreck, William Petzke, Pedro A. Jiménez, Thomas Brummet, Jason C. Knievel, Eric James, Branko Kosović and David John Gagne
Remote Sens. 2023, 15(13), 3372; https://doi.org/10.3390/rs15133372 - 1 Jul 2023
Cited by 6 | Viewed by 3022
Abstract
Monitoring the fuel moisture content (FMC) of 10 h dead vegetation is crucial for managing and mitigating the impact of wildland fires. The combination of in situ FMC observations, numerical weather prediction (NWP) models, and satellite retrievals has facilitated the development of machine [...] Read more.
Monitoring the fuel moisture content (FMC) of 10 h dead vegetation is crucial for managing and mitigating the impact of wildland fires. The combination of in situ FMC observations, numerical weather prediction (NWP) models, and satellite retrievals has facilitated the development of machine learning (ML) models to estimate 10 h dead FMC retrievals over the contiguous US (CONUS). In this study, ML models were trained using variables from the National Water Model, the High-Resolution Rapid Refresh (HRRR) NWP model, and static surface properties, along with surface reflectances and land surface temperature (LST) retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite system. Extensive hyper-parameter optimization resulted in skillful FMC models compared to a daily climatography RMSE (+44%) and an hourly climatography RMSE (+24%). Notably, VIIRS retrievals played a significant role as predictors for estimating 10 h dead FMC, demonstrating their importance as a group due to their high band correlation. Conversely, individual predictors within the HRRR group exhibited relatively high importance according to explainability techniques. Removing both HRRR and VIIRS retrievals as model inputs led to a significant decline in performance, particularly with worse RMSE values when excluding VIIRS retrievals. The importance of the VIIRS predictor group reinforces the dynamic relationship between 10 h dead fuel, the atmosphere, and soil moisture. These findings underscore the significance of selecting appropriate data sources when utilizing ML models for FMC prediction. VIIRS retrievals, in combination with selected HRRR variables, emerge as critical components in achieving skillful FMC estimates. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Graphical abstract

22 pages, 11494 KiB  
Article
Monitoring Urban Expansion (2000–2020) in Yangtze River Delta Using Time-Series Nighttime Light Data and MODIS NDVI
by Yanhong Zou, Jingya Shen, Yuying Chen and Baoyi Zhang
Sustainability 2023, 15(12), 9764; https://doi.org/10.3390/su15129764 - 19 Jun 2023
Cited by 3 | Viewed by 1945
Abstract
The Yangtze River Delta Urban Agglomeration (YRDUA), which is located in the convergence zone of “The Belt and Road Initiative”, is one of the regions with the best urbanization foundations in China. Referring to the four five-year plans (China’s national economic plan), this [...] Read more.
The Yangtze River Delta Urban Agglomeration (YRDUA), which is located in the convergence zone of “The Belt and Road Initiative”, is one of the regions with the best urbanization foundations in China. Referring to the four five-year plans (China’s national economic plan), this study aimed to investigate the spatiotemporal patterns of urban expansion in the YRDUA from 2000 to 2020. To conduct a long-term analysis of urbanization, an extended time series (2000–2020) of a nighttime light (NTL) dataset was built from the multi-temporal Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data (2000–2013), and Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) data (2014–2020); data from these sources are crucial to understanding the urbanization processes in the region in order for more effective decision making to take place. The support vector machine (SVM) method was used to extract urban clusters from the extended time-series NTL data and MODIS NDVI products. The evolution of the urban expansion intensity was detected at city scales, and the inequality of urban growth was demonstrated using the Lorenz curve and Gini coefficient. Finally, a quantitative relationship between urban NTL intensity and socio-economic data was built to explore the main factors that control urban intensity. The results indicated that the urban extents extracted from time-series NTL data were consistent with those extracted from Landsat data, with an average overall accuracy (OA) of 89%. A relatively fast urbanization pace was observed during the 10th five-year plan (from 2000 to 2005), which then declined slightly in the 11th five-year plan (from 2006 to 2010). By the 12th and 13th five-year plan (from 2011 to 2020), urban clusters in all cities tended to grow steadily. Urban expansion has presented a radial pattern around the main cities, with sprawl inequality across cities. The results further revealed that the primary factors controlling NTL brightness were gross domestic product (GDP), total fixed asset investment, tertiary industry, gross industrial output, urban area, and urban permanent residents in city clusters, but the same driving factors had a different contribution order on the NTL intensity across cities. This study provides significant insight for further urbanization study to be conducted in the YRDUA region, which is crucial for sustainable urban development in the region. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

26 pages, 10908 KiB  
Article
Forest Area and Structural Variable Estimation in Boreal Forest Using Suomi NPP VIIRS Data and a Sample from VHR Imagery
by Tuomas Häme, Heikki Astola, Jorma Kilpi, Yrjö Rauste, Laura Sirro, Teemu Mutanen, Eija Parmes, Jussi Rasinmäki and Mohammad Imangholiloo
Remote Sens. 2023, 15(12), 3029; https://doi.org/10.3390/rs15123029 - 9 Jun 2023
Cited by 1 | Viewed by 2419
Abstract
Our objective was to develop a method for the assessment of forest area and structural variables for cases in which the availability of representative ground reference data is poor and these data are not collected from the whole area of interest. We implemented [...] Read more.
Our objective was to develop a method for the assessment of forest area and structural variables for cases in which the availability of representative ground reference data is poor and these data are not collected from the whole area of interest. We implemented two independent approaches to the estimation of the forest variables of a European boreal forest: (i) the computation of wall-to-wall estimates using moderate- to low-resolution VIIRS imagery from the Suomi NPP mission; and (ii) the visual interpretation of plots of samples from very high resolution (VHR) satellite data obtained via a two-stage design. Our focus was on the statistical comparison of forest resources at a country or larger level. The study area was boreal forest ranging from Norway to the Ural Mountains in Russia. We computed a seamless mosaic from 111 VIIRS images. From the mosaic, we computed predictions for the forest area, growing stock volume, height of the dominating tree layer, proportion of conifers and broadleaved trees, site fertility class, and leaf area index. The reference data for the VIIRS imagery were national forest inventory (NFI)-based raster maps from Finland. The first stage sample of VHR data included 42 images; of these, a second stage sample of 2690 plots was visually interpreted for the same variables. The forest area prediction from VIIRS for the whole study area was 1.2% higher than the VHR-based result. All other structural variable predictions using VIIRS fitted within the 95% confidence intervals computed from the VHR sample except for estimates of the main tree species groups, which were outside the limits. A comparison of VIIRS-based forest area estimates using Finnish and Swedish NFI data indicated overestimations of 10.0% points and 4.6% points, whereas the total growing stock volumes were overestimated by 8% and underestimated by 3.4%, respectively. The correlation coefficients between the VIIRS and VHR image predictions at the 42 VHR image locations varied from 0.70 to 0.85. The VIIRS maps strongly averaged the local predictions due to their coarse spatial resolutions. Based on our findings, the approach using two independent estimations yielded similar figures for the central forest variables for the European boreal forest. A model computed using reference data from a small part of the area of interest can provide satisfactory predictions for a much larger area with a similar biome. Therefore, our concept is applicable to the estimation and overall mapping of a forest area and central structural variables at regional to national levels. Full article
(This article belongs to the Special Issue Remote Sensing for Forest Characterisation and Monitoring)
Show Figures

Graphical abstract

Back to TopTop