Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = Southern America

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9190 KiB  
Article
Modeling the Historical and Future Potential Global Distribution of the Pepper Weevil Anthonomus eugenii Using the Ensemble Approach
by Kaitong Xiao, Lei Ling, Ruixiong Deng, Beibei Huang, Qiang Wu, Yu Cao, Hang Ning and Hui Chen
Insects 2025, 16(8), 803; https://doi.org/10.3390/insects16080803 - 3 Aug 2025
Viewed by 264
Abstract
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add [...] Read more.
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add more uncertainty to its distribution, resulting in considerable ecological and economic damage globally. Therefore, we employed an ensemble model combining Random Forests and CLIMEX to predict the potential global distribution of A. eugenii in historical and future climate scenarios. The results indicated that the maximum temperature of the warmest month is an important variable affecting global A. eugenii distribution. Under the historical climate scenario, the potential global distribution of A. eugenii is concentrated in the Midwestern and Southern United States, Central America, the La Plata Plain, parts of the Brazilian Plateau, the Mediterranean and Black Sea coasts, sub-Saharan Africa, Northern and Southern China, Southern India, Indochina Peninsula, and coastal area in Eastern Australia. Under future climate scenarios, suitable areas in the Northern Hemisphere, including North America, Europe, and China, are projected to expand toward higher latitudes. In China, the number of highly suitable areas is expected to increase significantly, mainly in the south and north. Contrastingly, suitable areas in Central America, northern South America, the Brazilian Plateau, India, and the Indochina Peninsula will become less suitable. The total land area suitable for A. eugenii under historical and future low- and high-emission climate scenarios accounted for 73.12, 66.82, and 75.97% of the global land area (except for Antarctica), respectively. The high-suitability areas identified by both models decreased by 19.05 and 35.02% under low- and high-emission scenarios, respectively. Building on these findings, we inferred the future expansion trends of A. eugenii globally. Furthermore, we provide early warning of A. eugenii invasion and a scientific basis for its spread and outbreak, facilitating the development of effective quarantine and control measures. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

18 pages, 3030 KiB  
Article
Morphometric and Molecular Insights into Hepatozoon spp. in Wild and Synanthropic Rodents from Southern and Southeastern Brazil
by Tatiana Pádua Tavares de Freitas, Bernardo Rodrigues Teixeira, Eduarda de Oliveira Silva Lima Machado, Isaac Leandro Lira Pinto, Laís da Silva de Oliveira, Karina Varella, Huarrisson Azevedo Santos, Fernando de Oliveira Santos, Liliani Marilia Tiepolo, Carlos Luiz Massard and Maristela Peckle
Pathogens 2025, 14(8), 756; https://doi.org/10.3390/pathogens14080756 - 31 Jul 2025
Viewed by 181
Abstract
Small rodents are known hosts of various pathogens, including Hepatozoon, but until now, in Brazil, only Hepatozoon milleri has been described in these animals. In this study, liver samples and blood smears were obtained from 289 rodents belonging to 14 Cricetidae and [...] Read more.
Small rodents are known hosts of various pathogens, including Hepatozoon, but until now, in Brazil, only Hepatozoon milleri has been described in these animals. In this study, liver samples and blood smears were obtained from 289 rodents belonging to 14 Cricetidae and two Muridae species that had been captured in municipalities of the states of Paraná and Rio de Janeiro. Smears were stained with Giemsa, and gametocytes were detected via microscopy in 10.72% (n = 31/289) of samples, with these individuals representing three rodent species. Significant morphometric differences were observed in gametocyte measurements in Akodon rodents. Using conventional PCR, Hepatozoon spp. 18S rDNA fragments were amplified in 24.91% (n = 72/289) of samples, with those individuals representing seven rodent species. Phylogenetic analyses clustered 41 sequences from this study into a subclade with other sequences from small mammals in Brazil, identifying four distinct haplotypes, and, for the first time, a relationship between Hepatozoon haplotype and gametocyte length was observed. Based on phylogenetic analysis, this study reinforces the trophic relationship between rodents and reptiles as a possible link in the Hepatozoon transmission cycle in South America. Furthermore, our findings expand knowledge on Hepatozoon spp. hosts, describing Oxymycterus nasutus and Oxymycterus quaestor as new host species and identifying two novel circulating haplotypes in rodents from Paraná State, southern Brazil. Full article
(This article belongs to the Special Issue Vector Control and Parasitic Infection in Animals)
Show Figures

Graphical abstract

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 255
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

49 pages, 21554 KiB  
Article
A Disappearing Cultural Landscape: The Heritage of German-Style Land Use and Pug-And-Pine Architecture in Australia
by Dirk H. R. Spennemann
Land 2025, 14(8), 1517; https://doi.org/10.3390/land14081517 - 23 Jul 2025
Viewed by 272
Abstract
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the [...] Read more.
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the Americas, significantly shaped local communities, especially due to religious cohesion among Lutheran migrants. These settlers established distinct, enduring rural enclaves characterized by linguistic, religious and architectural continuity. The paper examines three manifestations of these cultural landscapes. A rich toponymic landscape was created by imposing on natural landscape features and newly founded settlements the names of the communities from which the German settlers originated. It discusses the erosion of German toponyms under wartime nationalist pressures, the subsequent partial reinstatement and the implications for cultural memory. The study traces the second manifestation of a cultural landscapes in the form of nucleated villages such as Hahndorf, Bethanien and Lobethal, which often followed the Hufendorf or Straßendorf layout, integrating Silesian land-use principles into the Australian context. Intensification of land use through housing subdivisions in two communities as well as agricultural intensification through broad acre farming has led to the fragmentation (town) and obliteration (rural) of the uniquely German form of land use. The final focus is the material expression of cultural identity through architecture, particularly the use of traditional Fachwerk (half-timbered) construction and adaptations such as pug-and-pine walling suited to local materials and climate. The paper examines domestic forms, including the distinctive black kitchen, and highlights how environmental and functional adaptation reshaped German building traditions in the antipodes. Despite a conservation movement and despite considerable documentation research in the late twentieth century, the paper shows that most German rural structures remain unlisted and vulnerable. Heritage neglect, rural depopulation, economic rationalization, lack of commercial relevance and local government policy have accelerated the decline of many of these vernacular buildings. The study concludes by problematizing the sustainability of conserving German Australian rural heritage in the face of regulatory, economic and demographic pressures. With its layering of intangible (toponymic), structural (buildings) and land use (cadastral) features, the examination of the cultural landscape established by nineteenth-century German immigrants adds to the body of literature on immigrant communities, settler colonialism and landscape research. Full article
Show Figures

Figure 1

16 pages, 3297 KiB  
Article
Predicting the Potential Geographical Distribution of Scolytus scolytus in China Using a Biomod2-Based Ensemble Model
by Wei Yu, Dongrui Sun, Jiayi Ma, Xinyuan Gao, Yu Fang, Huidong Pan, Huiru Wang and Juan Shi
Insects 2025, 16(7), 742; https://doi.org/10.3390/insects16070742 - 21 Jul 2025
Viewed by 425
Abstract
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, [...] Read more.
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, an ensemble model was developed using the Biomod2 platform to predict its potential geographical distribution in China. The selection of climate variables was critical for accurate prediction. Eight bioclimatic factors with high importance were selected from 19 candidate variables. Among these, the three most important factors are the minimum temperature of the coldest month (bio6), precipitation seasonality (bio15), and precipitation in the driest quarter (bio17). Under current climate conditions, suitable habitats for S. scolytus are mainly located in the temperate regions between 30° and 60° N latitude. These include parts of Europe, East Asia, eastern and northwestern North America, and southern and northeastern South America. In China, the low-suitability area was estimated at 37,883.39 km2, and the medium-suitability area at 251.14 km2. No high-suitability regions were identified. However, low-suitability zones were widespread across multiple provinces. Under future climate scenarios, low-suitability areas are still projected across China. Medium-suitability areas are expected to increase under SSP370 and SSP585, particularly along the eastern coastal regions, peaking between 2041 and 2060. High-suitability zones may also emerge under these two scenarios, again concentrated in coastal areas. These findings provide a theoretical basis for entry quarantine measures and early warning systems aimed at controlling the spread of S. scolytus in China. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1238 KiB  
Article
Assessment of Environmental Dynamics and Ecosystem Services of Guadua amplexifolia J. Presl in San Jorge River Basin, Colombia
by Yiniva Camargo-Caicedo, Jorge Augusto Montoya Arango and Fredy Tovar-Bernal
Resources 2025, 14(7), 115; https://doi.org/10.3390/resources14070115 - 18 Jul 2025
Viewed by 374
Abstract
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services [...] Read more.
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services remain poorly understood. This study (1) quantifies spatial and temporal land use/cover changes in the municipality of Montelíbano between 2002 and 2022 and (2) evaluates the ecosystem services that local communities derive from in 2002, 2012, and 2022, and they were classified in QGIS using G. amplexifolia. We applied a supervised classification of Landsat imagery (2002, 2012, 2022) in QGIS, achieving 85% overall accuracy and a Cohen’s Kappa of 0.82 (n = 45 reference points). For the social assessment, we held participatory workshops and conducted semi-structured interviews with artisans, fishers, authorities, and NGO representatives; responses were manually coded to extract key themes. The results show a 12% decline in total vegetated area from 2002 to 2012, followed by an 8% recovery by 2022, with bamboo-dominated stands following a similar pattern. Communities identified raw material provision (87% of mentions), climate regulation (82%), and cultural–recreational benefits (58%) as the most important services provided by G. amplexifolia. This is the first integrated assessment of G. amplexifolia’s landscape dynamics and community-valued services in the San Jorge basin, highlighting its dual function as a renewable resource and a natural safeguard against environmental risks. Our findings offer targeted recommendations for management practices and land use policies to support the species’ conservation and sustainable utilization. Full article
Show Figures

Figure 1

28 pages, 2931 KiB  
Review
Remote Sensing-Based Phenology of Dryland Vegetation: Contributions and Perspectives in the Southern Hemisphere
by Andeise Cerqueira Dutra, Ankur Srivastava, Khalil Ali Ganem, Egidio Arai, Alfredo Huete and Yosio Edemir Shimabukuro
Remote Sens. 2025, 17(14), 2503; https://doi.org/10.3390/rs17142503 - 18 Jul 2025
Viewed by 455
Abstract
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and [...] Read more.
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and complex spectral signals. Unlike the Northern Hemisphere, these challenges are further compounded in the Southern Hemisphere (SH), where several regions experience year-round moderate temperatures. When combined with irregular rainfall, this leads to highly variable vegetation activity throughout the year. However, LSP dynamics in the SH remain poorly understood. This study presents a review of remote sensing-based phenology research in drylands, integrating (i) a synthesis of global methodological advances and (ii) a systematic analysis of peer-reviewed studies published from 2015 through April 2025 focused on SH drylands. This review reveals a research landscape still dominated by conventional vegetation indices (e.g., NDVI) and moderate-spatial-resolution sensors (e.g., MODIS), though a gradual shift toward higher-resolution sensors such as PlanetScope and Sentinel-2 has emerged since 2020. Despite the widespread use of start- and end-of-season metrics, their accuracy varies greatly, especially in heterogeneous landscapes. Yet, advanced products such as solar-induced chlorophyll fluorescence or the fraction of absorbed photosynthetically active radiation were rarely employed. Gaps remain in the representation of hyperarid zones, grass- and shrub-dominated landscapes, and large regions of Africa and South America. Our findings highlight the need for multi-sensor approaches and expanded field validation to improve phenological assessments in dryland environments. The accurate differentiation of vegetation responses in LSP is essential not only for refining phenological metrics but also for enabling more realistic assessments of ecosystem functioning in the context of climate change and its impact on vegetation dynamics. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

12 pages, 5143 KiB  
Article
Ochrolechia raynori, a New Lichen Species from the Southern Rocky Mountains (Colorado, USA) and Key to Asexually Reproducing Ochrolechia in Western North America
by Erin A. Manzitto-Tripp and Jacob L. Watts
Wild 2025, 2(3), 28; https://doi.org/10.3390/wild2030028 - 14 Jul 2025
Viewed by 229
Abstract
Ochrolechia is a diverse and charismatic lineage of both sexually and asexually reproducing lichens, with centers of species richness in northern temperate areas of the world, including North America. As part of recent work to comprehensively inventory the lichens of the Indian Peaks [...] Read more.
Ochrolechia is a diverse and charismatic lineage of both sexually and asexually reproducing lichens, with centers of species richness in northern temperate areas of the world, including North America. As part of recent work to comprehensively inventory the lichens of the Indian Peaks Wilderness (Arapaho–Roosevelt National Forest, Front Range Mountains, Colorado), we discovered material of a sorediate member of the genus to which no existing names could be applied. This material was collected in very remote, extremely difficult-to-access mid-montane forests of the west slope of the Indian Peaks Wilderness, in a steep and jagged off-trail drainage (Hell Canyon). Subsequent study of this material along with review of pre-existing collections at the COLO Herbarium revealed it to represent a new scientific species. We here formally describe Ochrolechia raynori, in honor of Seth Raynor who led the Indian Peaks Wilderness lichen inventory. We additionally document the occurrence of Dactylospora parasitica on this new lichen species. Ochrolechia raynori is distinctive for its continuous, smooth, shiny thallus that bears discrete soralia and coarse soredia, its occurrence on mosses and other lichens that overgrow rocks, and its chemistry. We generated a molecular phylogeny of this and other members of Ochrolechia using the nrITS locus and show O. raynori to be sister to the widespread, sexually reproducing species O. upsaliensis. This occurrence of an asexual species that is sister to a sexual species is consistent with the “species pair” hypothesis in lichenology, which suggests an intimate role of reproductive mode divergence in the process of speciation. Examination of the phylogeny yielded evidence of four additional pairs in Ochrolechia, for a total of five species pairs, which indicates that this phenomenon may be a common occurrence in this lineage. IUCN Conservation Assessment of Ochrolechia raynori revealed the species to be best considered as Critically Endangered. However, we expect that continued efforts to inventory the lichens of the southern Rocky Mountains, especially in some of its wildest, most remote regions in similar habitats, will likely result in the discovery of additional populations of this remarkable new species. Full article
Show Figures

Figure 1

13 pages, 2240 KiB  
Article
Multi-Annual Dendroclimatic Patterns for the Desert National Wildlife Refuge, Southern Nevada, USA
by Franco Biondi and James Roberts
Forests 2025, 16(7), 1142; https://doi.org/10.3390/f16071142 - 10 Jul 2025
Viewed by 313
Abstract
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin [...] Read more.
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin and Mojave Deserts. In an effort to improve our understanding of long-term environmental dynamics in sky-island ecosystems, we developed tree-ring chronologies from ponderosa pines located in the Sheep Mountain Range of southern Nevada, inside the Desert National Wildlife Refuge (DNWR). After comparing those dendrochronological records with other ones available for the south-central Great Basin, we analyzed their climatic response using station-recorded monthly precipitation and air temperature data from 1950 to 2024. The main climatic signal was December through May total precipitation, which was then reconstructed at annual resolution over the past five centuries, from 1490 to 2011 CE. The mean episode duration was 2.6 years, and the maximum drought duration was 11 years (1924–1934; the “Dust Bowl” period), while the longest episode, 19 years (1905–1923), is known throughout North America as the “early 1900s pluvial”. By quantifying multi-annual dry and wet episodes, the period since DNWR establishment was placed in a long-term dendroclimatic framework, allowing us to estimate the potential drought resilience of its unique, tree-dominated environments. Full article
(This article belongs to the Special Issue Environmental Signals in Tree Rings)
Show Figures

Figure 1

13 pages, 392 KiB  
Article
The Range of Projected Change in Vapour Pressure Deficit Through 2100: A Seasonal and Regional Analysis of the CMIP6 Ensemble
by Jiulong Xu, Mingyang Yao, Yunjie Chen, Liuyue Jiang, Binghong Xing and Hamish Clarke
Climate 2025, 13(7), 143; https://doi.org/10.3390/cli13070143 - 9 Jul 2025
Viewed by 582
Abstract
Vapour pressure deficit (VPD) is frequently used to assess the impact of climate change on wildfires, vegetation, and other phenomena dependent on atmospheric moisture. A common aim of projection studies is to sample the full range of changes projected by climate models. Although [...] Read more.
Vapour pressure deficit (VPD) is frequently used to assess the impact of climate change on wildfires, vegetation, and other phenomena dependent on atmospheric moisture. A common aim of projection studies is to sample the full range of changes projected by climate models. Although characterization of model spread in projected temperature and rainfall is common, similar analyses are lacking for VPD. Here, we analyze the range of change in projected VPD from a 15-member CMIP6 model ensemble using the SSP-370 scenario. Projected changes are calculated for 2015–2100 relative to the historical period 1850–2014, and the resulting changes are analyzed on a seasonal and regional basis, the latter using continents based on IPCC reference regions. We find substantial regional differences including higher increases in VPD in areas towards the equatorial regions, indicating increased vulnerability to climate change in these areas. Seasonal assessments reveal that regions in the Northern Hemisphere experience peak VPD changes in summer (JJA), correlating with higher temperatures and lower relative humidity, while Southern Hemisphere areas like South America see notable increases in all seasons. We find that the mean projected change in seasonal VPD ranges from 0.02–0.23 kPa in Europe, 0.04–0.19 kPa in Asia, 0.02–0.16 kPa in North America, 0.15–0.33 kPa in South America, 0.10–0.18 kPa in Oceania, and 0.21–0.31 kPa in Africa. Our analysis suggests that for most regions, no two models span the range of projected change in VPD for all seasons. The overall projected change space for VPD identified here can be used to interpret existing studies and support model selection for future climate change impact assessments that seek to span this range. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

18 pages, 7356 KiB  
Review
Applied Chemical Ecology of Spruce Beetle in Western North America
by Christopher J. Fettig, Jackson P. Audley and Allen Steven Munson
Forests 2025, 16(7), 1103; https://doi.org/10.3390/f16071103 - 3 Jul 2025
Viewed by 287
Abstract
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back [...] Read more.
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back to the mid-20th century and focuses on spruce beetle populations in Alaska, U.S., western Canada, and the central and southern Rocky Mountains, U.S. Spruce beetle aggregation pheromone components include frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane), seudenol (3-methyl-2-cyclohexen-1-ol), MCOL (1-methyl-2-cyclohexen-1-ol), and verbenene (4-methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene). The attraction of spruce beetle to one aggregation pheromone component is enhanced by the co-release of other aggregation pheromones and host compounds (e.g., α-pinene). Several baits that attract spruce beetles are commercially available and are used for survey and detection, population suppression, snag creation, and experimental purposes. The antiaggregation pheromone is MCH (3-methyl-2-cyclohexen-1-one), which has been evaluated for reducing colonization of felled spruce since the 1970s. Beginning in the early 2000s, MCH has been evaluated for protecting live, standing spruce from colonization by and mortality attributed to spruce beetle. With a few exceptions, significant reductions in levels of spruce beetle colonization and/or spruce mortality were reported. More recent efforts have combined MCH with other repellents (e.g., nonhost compounds) in hope of increasing levels of tree protection. Today, several formulations of MCH are registered for tree protection purposes in the U.S. and Canada. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

23 pages, 6713 KiB  
Article
Global Aerosol Climatology from ICESat-2 Lidar Observations
by Shi Kuang, Matthew McGill, Joseph Gomes, Patrick Selmer, Grant Finneman and Jackson Begolka
Remote Sens. 2025, 17(13), 2240; https://doi.org/10.3390/rs17132240 - 30 Jun 2025
Viewed by 535
Abstract
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as [...] Read more.
This study presents a global aerosol climatology derived from six years (October 2018–October 2024) of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) observations, using a U-Net Convolutional Neural Network (CNN) machine learning algorithm for Cloud–Aerosol Discrimination (CAD). Despite ICESat-2’s design primarily as an altimetry mission with a single-wavelength, low-power, high-repetition-rate laser, ICESat-2 effectively captures global aerosol distribution patterns and can provide valuable insights to bridge the observational gap between the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) missions to support future spaceborne lidar mission design. The machine learning approach outperforms traditional thresholding methods, particularly in complex conditions of cloud embedded in aerosol, owing to a finer spatiotemporal resolution. Our results show that annually, between 60°S and 60°N, 78.4%, 17.0%, and 4.5% of aerosols are located within the 0–2 km, 2–4 km, and 4–6 km altitude ranges, respectively. Regional analyses cover the Arabian Sea (ARS), Arabian Peninsula (ARP), South Asia (SAS), East Asia (EAS), Southeast Asia (SEA), the Americas, and tropical oceans. Vertical aerosol structures reveal strong trans-Atlantic dust transport from the Sahara in summer and biomass burning smoke transport from the Savanna during dry seasons. Marine aerosol belts are most prominent in the tropics, contrasting with earlier reports of the Southern Ocean maxima. This work highlights the importance of vertical aerosol distributions needed for more accurate quantification of the aerosol–cloud interaction influence on radiative forcing for improving global climate models. Full article
Show Figures

Figure 1

19 pages, 17326 KiB  
Article
The Impact of Grassland Fires on the Archaeological Record—A Case Study Along the Eastern Escarpment of the Southern High Plains of Texas
by Stance Hurst, Doug Cunningham, Eileen Johnson and Glenn Fernandez-Cespedes
Land 2025, 14(7), 1364; https://doi.org/10.3390/land14071364 - 28 Jun 2025
Viewed by 327
Abstract
Fires are an essential aspect of the grassland ecosystem across the Great Plains of North America. Wildfires can also transform surrounding rocks to appear like hearths or hearthstones used by prehistoric people. A grassland fire that swept through part of a historic ranch [...] Read more.
Fires are an essential aspect of the grassland ecosystem across the Great Plains of North America. Wildfires can also transform surrounding rocks to appear like hearths or hearthstones used by prehistoric people. A grassland fire that swept through part of a historic ranch located along the eastern escarpment of the Southern High Plains of Texas has created surface features that mimicked the appearance of hearths. Fourteen wildfire features resembling hearths have been documented, and thermally modified rocks from the surface of three of these features were analyzed to investigate the impact of natural fires on the landscape. The results demonstrate that wildfires can create features resembling hearths when an adjacent shrub is burned. An excavation and detailed analysis, however, suggest that (1) the tops of thermally modified rocks from a wildfire will often have a relatively darker Munsell color value in comparison to their bottom halves, and (2) wildfire features will likely have a thinner cross-section of ash and larger pieces of charcoal produced from the incomplete combustion of the nearby shrub and deadfall. The broader implications are useful for understanding site formation processes within temperate grassland settings in other places. Full article
Show Figures

Figure 1

13 pages, 2476 KiB  
Article
Trends in the Mortality, Deaths, and Aetiologies of Lower Respiratory Infections Among 204 Countries from 1991 to 2021: An Updated Systematic Study
by Meichen Li, Min Liu and Jue Liu
Viruses 2025, 17(7), 892; https://doi.org/10.3390/v17070892 - 25 Jun 2025
Viewed by 591
Abstract
Lower respiratory infections (LRIs) persist as a major global health threat. This study analyses the 1991–2021 trends in LRI mortality, deaths, and aetiologies across 204 countries using Global Burden of Disease 2021 data, aiming to evaluate the disease burden of LRIs and provide [...] Read more.
Lower respiratory infections (LRIs) persist as a major global health threat. This study analyses the 1991–2021 trends in LRI mortality, deaths, and aetiologies across 204 countries using Global Burden of Disease 2021 data, aiming to evaluate the disease burden of LRIs and provide evidence-based guidance for prevention strategies. To quantify the temporal trends, the annual percentage change was estimated (EAPC) using linear regression modeling. Globally, the ASMR for LRI decreased by an average of 2.29% annually (95% CI: 2.16–2.42%). While ASMR decreased in 20 of the GBD regions, mortality rates in Southern Latin America increased (EAPC = 1.32, 95% CI: 0.98–1.67). The LRI burden remains the heaviest in low SDI regions and sub-Saharan Africa. LRIs continue to cause high mortality in children and the elderly. Mortality in children decreased rapidly, while mortality in the elderly declined more slowly. Streptococcus pneumoniae was the leading cause of LRI-related deaths, followed by Staphylococcus aureus and Klebsiella pneumoniae. LRIs remain a leading cause of global mortality, especially in low SDI regions, and among children and the elderly. Future research on LRIs and the development of effective prevention and control strategies are essential to reduce the disease burden of LRIs. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

11 pages, 675 KiB  
Article
High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought
by Victoria M. Donovan, Allie V. Schiltmeyer, Carissa L. Wonkka, Jacob Wagner, Devan A. McGranahan, William E. Rogers, Urs P. Kreuter and Dirac Twidwell
Fire 2025, 8(7), 242; https://doi.org/10.3390/fire8070242 - 21 Jun 2025
Viewed by 444
Abstract
The almost complete eradication of fire from grasslands in North America has led to non-linear hysteretic transitions to shrub- and woodlands that the reintroduction of low-intensity fire is unable to reverse. We explore the ability of the extreme ends of variation in fire [...] Read more.
The almost complete eradication of fire from grasslands in North America has led to non-linear hysteretic transitions to shrub- and woodlands that the reintroduction of low-intensity fire is unable to reverse. We explore the ability of the extreme ends of variation in fire behavior to help overcome hysteretic threshold behaviors in huisache (Vachellia farnesiana) encroached grasslands. We contrasted experimental fire treatments with unburned control areas to assess the ability of extreme fires burned during drought to alter the density and structure of huisache. We found that extreme fires reduced the density of huisache by over 30% compared to control plots, both through driving huisache mortality and reducing the number of new recruits following treatments. For instance, extreme fire drove 48% huisache mortality compared to 4% in control treatments. For surviving plants, the number of stems increased but the crown area did not significantly change. Prescribed fire, conducted under the right conditions, can drive high mortality in one of the most notorious encroaching species in the southern U.S. Great Plains. With the fire conditions observed in this study likely to increase under future climate projections, utilizing extreme fire as a management tool for huisache will help scale up management to meet the growing extent of woody encroachment into grasslands. Full article
Show Figures

Figure 1

Back to TopTop