Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (572)

Search Parameters:
Keywords = SURF1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4467 KiB  
Article
Delineation of Dynamic Coastal Boundaries in South Africa from Hyper-Temporal Sentinel-2 Imagery
by Mariel Bessinger, Melanie Lück-Vogel, Andrew Luke Skowno and Ferozah Conrad
Remote Sens. 2025, 17(15), 2633; https://doi.org/10.3390/rs17152633 - 29 Jul 2025
Viewed by 160
Abstract
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; [...] Read more.
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; therefore, mono-temporal assessments of coastal ecosystems and coastlines are mere snapshots of limited practical value for space-based planning. Understanding of the spatio-temporal dynamics of coastal ecosystem boundaries is important to inform ecosystem management but also for a meaningful delineation of the high-water mark, which is used as a benchmark for coastal spatial planning in South Africa. This research aimed to use hyper-temporal Sentinel-2 imagery to extract ecological zones on the coast of KwaZulu-Natal, South Africa. A total of 613 images, collected between 2019 and 2023, were classified into four distinct coastal ecological zones—vegetation, bare, surf, and water—using a Random Forest model. Across all classifications, the percentage of each of the four classes’ occurrence per pixel over time was determined. This enabled the identification of ecosystem locations, spatially static ecosystem boundaries, and the occurrence of ecosystem boundaries with a more dynamic location over time, such as the non-permanent vegetation zone of the foredune area as well as the intertidal zone. The overall accuracy of the model was 98.13%, while the Kappa coefficient was 0.975, with user’s and producer’s accuracies ranging between 93.02% and 100%. These results indicate that cloud-based analysis of Sentinel-2 time series holds potential not just for delineating coastal ecosystem boundaries, but also for enhancing the understanding of spatio-temporal dynamics between them, to inform meaningful environmental management, spatial planning, and climate adaptation strategies. Full article
Show Figures

Figure 1

12 pages, 396 KiB  
Article
Surf’s Up for Postural Stability: A Descriptive Study of Physical Activity, Balance, Flexibility, and Self-Esteem in Healthy Adults
by Guillermo De Castro-Maqueda, Miguel Ángel Rosety-Rodríguez, Macarena Rivero-Vila, Jorge Del Rosario Fernández-Santos and Teppei Abiko
J. Funct. Morphol. Kinesiol. 2025, 10(3), 290; https://doi.org/10.3390/jfmk10030290 - 29 Jul 2025
Viewed by 237
Abstract
Background: This study examines balance, flexibility and self-esteem among healthy individuals who engage in surfing compared to those who do not surf. Methods: A cross-sectional study design was conducted with 124 participants divided into the following groups: Group 1: Surfers n = 42; [...] Read more.
Background: This study examines balance, flexibility and self-esteem among healthy individuals who engage in surfing compared to those who do not surf. Methods: A cross-sectional study design was conducted with 124 participants divided into the following groups: Group 1: Surfers n = 42; Group 2: individuals performing over 3 h of physical activity per week n = 43; and Group 3: individuals performing fewer than 3 h of physical activity per week n = 39. To assess balance, the Star Excursion Balance Test (SEBT) and the Flamenco Test (FBT) were used, the sit-and-reach test (SRT) was used to measure hamstring extensibility, the Rosenberg Scale was used to measure self-esteem, and the International Physical Activity Questionnaire (IPAQ) was used to measure physical activity levels. Results: Regarding descriptive characteristics, G1 participants were significant older than those of G2 and G3 (p < 0.05 and p < 0.001, respectively). Moreover, there was a higher proportion of females in G3 than in G1 and G2 (p < 0.05). The results revealed significant differences in balance between the surfers and those engaging in fewer than 3 h of activity per week (p < 0.05). G1 obtained significantly higher results in SEBT-left leg than G2 and G3 (p < 0.001) and higher result in SEBT-right leg and FBT than G3 (p < 0.05) but no significant differences in self-esteem were found. Significant differences in flexibility were observed between males and females (p < 0.001). Conclusions: This result suggests that surfing could have a positive effect on balance. Full article
Show Figures

Figure 1

25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 367
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

29 pages, 2168 KiB  
Article
Credit Sales and Risk Scoring: A FinTech Innovation
by Faten Ben Bouheni, Manish Tewari, Andrew Salamon, Payson Johnston and Kevin Hopkins
FinTech 2025, 4(3), 31; https://doi.org/10.3390/fintech4030031 - 18 Jul 2025
Viewed by 404
Abstract
This paper explores the effectiveness of an innovative FinTech risk-scoring model to predict the risk-appropriate return for short-term credit sales. The risk score serves to mitigate the information asymmetry between the seller of receivables (“Seller”) and the purchaser (“Funder”), at the same time [...] Read more.
This paper explores the effectiveness of an innovative FinTech risk-scoring model to predict the risk-appropriate return for short-term credit sales. The risk score serves to mitigate the information asymmetry between the seller of receivables (“Seller”) and the purchaser (“Funder”), at the same time providing an opportunity for the Funder to earn returns as well as to diversify its portfolio on a risk-appropriate basis. Selling receivables/credit to potential Funders at a risk-appropriate discount also helps Sellers to maintain their short-term financial liquidity and provide the necessary cash flow for operations and other immediate financial needs. We use 18,304 short-term credit-sale transactions between 23 April 2020 and 30 September 2022 from the private FinTech startup Crowdz and its Sustainability, Underwriting, Risk & Financial (SURF) risk-scoring system to analyze the risk/return relationship. The data includes risk scores for both Sellers of receivables (e.g., invoices) along with the Obligors (firms purchasing goods and services from the Seller) on those receivables and provides, as outputs, the mutual gains by the Sellers and the financial institutions or other investors funding the receivables (i.e., the Funders). Our analysis shows that the SURF Score is instrumental in mitigating the information asymmetry between the Sellers and the Funders and provides risk-appropriate periodic returns to the Funders across industries. A comparative analysis shows that the use of SURF technology generates higher risk-appropriate annualized internal rates of return (IRR) as compared to nonuse of the SURF Score risk-scoring system in these transactions. While Sellers and Funders enter into a win-win relationship (in the absence of a default), Sellers of credit instruments are not often scored based on the potential diversification by industry classification. Crowdz’s SURF technology does so and provides Funders with diversification opportunities through numerous invoices of differing amounts and SURF Scores in a wide range of industries. The analysis also shows that Sellers generally have lower financing stability as compared to the Obligors (payers on receivables), a fact captured in the SURF Scores. Full article
(This article belongs to the Special Issue Trends and New Developments in FinTech)
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 275
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

14 pages, 971 KiB  
Article
High Voltage and Train-Surfing Injuries: A 30-Year Retrospective Analysis of High-Voltage Trauma and Its Impact on Cardiac Biomarkers
by Viktoria Koenig, Maximilian Monai, Alexandra Christ, Marita Windpassinger, Gerald C. Ihra, Alexandra Fochtmann-Frana and Julian Joestl
J. Clin. Med. 2025, 14(14), 4969; https://doi.org/10.3390/jcm14144969 - 14 Jul 2025
Viewed by 290
Abstract
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these [...] Read more.
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these behaviors expose individuals to the invisible danger of electric arcs from 15,000-volt railway lines, often resulting in extensive burns, cardiac complications, and severe trauma. This study presents a 30-year retrospective analysis comparing cardiac biomarkers and clinical outcomes in train-surfing injuries versus work-related HVEIs. Methods: All patients with confirmed high-voltage injury (≥1000 volts) admitted to a Level 1 burn center between 1994 and 2024 were retrospectively analyzed. Exclusion criteria comprised low-voltage trauma, suicide, incomplete records, and external treatment. Clinical and laboratory parameters—including total body surface area (TBSA), Abbreviated Burn Severity Index (ABSI), electrocardiogram (ECG) findings, intensive care unit (ICU) and hospital stay, mortality, and cardiac biomarkers (creatine kinase [CK], CK-MB, lactate dehydrogenase [LDH], aspartate transaminase [AST], troponin, and myoglobin)—were compared between the two cohorts. Results: Of 81 patients, 24 sustained train-surfing injuries and 57 were injured in occupational settings. Train surfers were significantly younger (mean 16.7 vs. 35.2 years, p = 0.008), presented with greater TBSA (49.9% vs. 17.9%, p = 0.008), higher ABSI scores (7.3 vs. 5.1, p = 0.008), longer ICU stays (53 vs. 17 days, p = 0.008), and higher mortality (20.8% vs. 3.5%). ECG abnormalities were observed in 51% of all cases, without significant group differences. However, all cardiac biomarkers were significantly elevated in train-surfing injuries at both 72 h and 10 days post-injury (p < 0.05), suggesting more pronounced cardiac and muscular damage. Conclusions: Train-surfing-related high-voltage injuries are associated with markedly more severe systemic and cardiac complications than occupational HVEIs. The significant biomarker elevation and critical care demands highlight the urgent need for targeted prevention, public awareness, and early cardiac monitoring in this high-risk adolescent population. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

12 pages, 7718 KiB  
Technical Note
Nearshore Depth Inversion Bathymetry from Coastal Webcam: A Novel Technique Based on Wave Celerity Estimation
by Umberto Andriolo, Alberto Azevedo, Gil Gonçalves and Rui Taborda
Remote Sens. 2025, 17(13), 2274; https://doi.org/10.3390/rs17132274 - 2 Jul 2025
Viewed by 344
Abstract
Nearshore bathymetry is key to most oceanographic studies and coastal engineering works. This work proposes a new methodology to assess nearshore wave celerity and infer bathymetry from video images. Shoaling and breaking wave patterns were detected on the Timestacks distinctly, and wave celerity [...] Read more.
Nearshore bathymetry is key to most oceanographic studies and coastal engineering works. This work proposes a new methodology to assess nearshore wave celerity and infer bathymetry from video images. Shoaling and breaking wave patterns were detected on the Timestacks distinctly, and wave celerity was estimated from wave trajectories. The wave type separation enabled the implementation of specific domain formulations for depth inversion: linear for shoaling and non-linear for breaking waves. The technique was validated over a rocky bottom using video acquisition of an online streaming webcam for a period of two days, with significant wave heights varying between 1.7 m and 3.5 m. The results were corroborated in comparison to ground-truth data available up to a depth of 10 m, yielding a mean bias of 0.05 m and a mean root mean square error (RMSE) of 0.43 m. In particular, RMSE was lower than 15% in the outer surf zone, where breaking processes occur. Overall, the depth-normalized RMSE was always lower than 20%, with the major inaccuracy due to some local depressions, which were not resolved. The developed technique can be readily applied to images collected by coastal monitoring stations worldwide and is applicable to drone video acquisitions. Full article
(This article belongs to the Special Issue Remote Sensing Application in Coastal Geomorphology and Processes II)
Show Figures

Figure 1

18 pages, 1994 KiB  
Article
Prognostic Modeling of Deleterious IDUA Mutations L238Q and P385R in Hurler Syndrome Through Molecular Dynamics Simulations
by Madhana Priya Nanda Kumar, Esakki Dharsini Selvamani, Archana Pai Panemangalore, Sidharth Kumar Nanda Kumar, Vasundra Vasudevan and Magesh Ramasamy
Pharmaceuticals 2025, 18(6), 922; https://doi.org/10.3390/ph18060922 - 19 Jun 2025
Viewed by 626
Abstract
MPS I (Mucopolysaccharidosis type I) is a rare lysosomal storage disease originating from the deficiency of the enzyme alpha-L-iduronidase, encoded by the IDUA gene, which impairs the degradation of glycosaminoglycans (GAGs) and diminishes biological functioning across several organs. Background: Out of the eleven [...] Read more.
MPS I (Mucopolysaccharidosis type I) is a rare lysosomal storage disease originating from the deficiency of the enzyme alpha-L-iduronidase, encoded by the IDUA gene, which impairs the degradation of glycosaminoglycans (GAGs) and diminishes biological functioning across several organs. Background: Out of the eleven MPS disorders, MPS I includes three syndromes, of which the first, named Hurler syndrome, affects the most. Methods: Several in silico tools were used, such as ConSurf (73 variants), Mutation Assessor (69 variants), PredictSNP, MAPP, PhDSNP, Polyphen-1, Polyphen-2, SIFT, SNAP, PANTHER, MetaSNP (24 variants); Missense 3D-DB (11 variants) and AlignGVGD (eight variants) for physicochemical properties; and I-Mutant, Mupro, CUPSAT, and INPS for stability predictions (four variants). Results: A molecular docking study was performed for the two variants: L238Q and P385R scored −7.22 and −7.05 kcal/mol, respectively, and the native scored −7.14 kcal/mol with IDR as the ligand. Molecular dynamics anticipated how these molecules fluctuate over a period of 100 nanoseconds. Conclusions: Alpha-L-iduronidase enzyme has a critical role in the lysosomal degradation of glycosaminoglycans. According to the comparative analysis of the three structures by MDS, P385R had the least stability in all aspects of the plots. Our study demonstrates that the mutation significantly alters protein stability and binding efficiency with the ligands. Full article
Show Figures

Figure 1

14 pages, 949 KiB  
Article
A New Approach to ORB Acceleration Using a Modern Low-Power Microcontroller
by Jorge Aráez, Santiago Real and Alvaro Araujo
Sensors 2025, 25(12), 3796; https://doi.org/10.3390/s25123796 - 18 Jun 2025
Viewed by 364
Abstract
A key component in visual Simultaneous Location And Mapping (SLAM) systems is feature extraction and description. One common algorithm that accomplishes this purpose is Oriented FAST and Rotated BRIEF (ORB), which is used in state-of-the-art SLAM systems like ORB-SLAM. While it is faster [...] Read more.
A key component in visual Simultaneous Location And Mapping (SLAM) systems is feature extraction and description. One common algorithm that accomplishes this purpose is Oriented FAST and Rotated BRIEF (ORB), which is used in state-of-the-art SLAM systems like ORB-SLAM. While it is faster than other feature detectors like SIFT (340 times faster) or SURF (15 times faster), it is one of the most computationally expensive algorithms in these types of systems. This problem has commonly been solved by delegating this task to hardware-accelerated solutions like FPGAs or ASICs. While this solution is useful, it incurs a greater economical cost. This work proposes a solution for feature extraction and description based on a modern low-power mainstream microcontroller. The execution time of ORB, along with power consumption, are analyzed in relation to the number of feature points and internal variables. The results show a maximum of 0.6 s for ORB execution in 1241 × 376 resolution images, which is significantly slower than other hardware-accelerated solutions but remains viable for certain applications. Additionally, the power consumption ranges between 30 and 40 milliwatts, which is lower than FPGA solutions. This work also allows for future optimizations that will improve the results of this paper. Full article
(This article belongs to the Special Issue Sensors and Sensory Algorithms for Intelligent Transportation Systems)
Show Figures

Figure 1

18 pages, 21015 KiB  
Article
Machine Learning Beach Attendance Forecast Modelling from Automatic Video-Derived Counting
by Bruno Castelle, David Carayon, Jeoffrey Dehez, Sylvain Liquet, Vincent Marieu, Nadia Sénéchal, Sandrine Lyser, Jean-Philippe Savy and Stéphanie Barneix
J. Mar. Sci. Eng. 2025, 13(6), 1181; https://doi.org/10.3390/jmse13061181 - 17 Jun 2025
Cited by 1 | Viewed by 608
Abstract
Accurate predictions of beach user numbers are important for coastal management, resource allocation, and minimising safety risks, especially when considering surf-zone hazards. The present work applies an XGBoost model to predict beach attendance from automatically video-derived data, incorporating input variables such as weather, [...] Read more.
Accurate predictions of beach user numbers are important for coastal management, resource allocation, and minimising safety risks, especially when considering surf-zone hazards. The present work applies an XGBoost model to predict beach attendance from automatically video-derived data, incorporating input variables such as weather, waves, tide, and time (e.g., day hour, weekday). This approach is applied to data collected from Biscarrosse Beach during the summer of 2023, where beach attendance varied significantly (from 0 to 2031 individuals). Results indicate that the optimal XGBoost model achieved high predictive accuracy, with a coefficient of determination (R2) of 0.97 and an RMSE of 70.4 users, using daily mean weather data, tide and time as input variables, i.e., disregarding wave data. The model skilfully captures both day-to-day and hourly variability in attendance, with time of day (hour) and daily mean air temperature being the most influential variables. An XGBoost model using only daily mean temperature and hour of the day even shows good predictive accuracy (R2 = 0.90). The study emphasises the importance of daily mean weather data over instantaneous measurements, as beach users tend to plan visits based on forecasts. This model offers reliable, computationally inexpensive, and high-frequency (e.g., every 10 min) beach user predictions which, combined with existing surf-zone hazard forecast models, can be used to anticipate life risk at the beach. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 5958 KiB  
Article
Analysis of the Effect of Three-Dimensional Topology Modification on Temperature Field and Thermal Deformation of Internal Helical Gears Pair
by Gaowei Yao, Gang Liu, Jianxin Su, Hongbin Yang, Mingxuan Jin and Xiao Wei
Appl. Sci. 2025, 15(11), 6244; https://doi.org/10.3390/app15116244 - 1 Jun 2025
Viewed by 401
Abstract
The transmission accuracy and meshing performance of the gearbox is determined by the internal helical gears pair. Thermal deformation of internal helical gears pair is derived from sliding friction between the contacting teeth surface, resulting in shock, vibration, and misalignments. The purpose of [...] Read more.
The transmission accuracy and meshing performance of the gearbox is determined by the internal helical gears pair. Thermal deformation of internal helical gears pair is derived from sliding friction between the contacting teeth surface, resulting in shock, vibration, and misalignments. The purpose of this paper is to compare the influence of a modified gear and an unmodified gear on the temperature field and transmission characteristics of a planetary gear system under the same working conditions. This study presents an innovative temperature field model for gear pairs utilizing Surf152 elements, integrating Hertzian contact theory, tribological principles, and finite element analysis. For the first time, we quantitatively demonstrate the enhancement of thermo-mechanical performance through topological modification in helical gears. Under light-load conditions (200 rpm), the modified gear configuration exhibits a 6.38% reduction in tooth surface temperature and a 46.5% decrease in thermal deformation compared to conventional designs. Experimental validation confirms these improvements, showing an average 62.35% reduction in transmission error. These findings establish a novel methodology for high-precision gear design while providing critical theoretical foundations for planetary gear systems, ultimately leading to significant improvements in both transmission accuracy and operational lifespan. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 818 KiB  
Article
Tourist Motivations and Segmentation in Coastal Tourism: A Study in Montañita, Ecuador
by Mauricio Carvache-Franco, Lidija Bagarić, Orly Carvache-Franco and Wilmer Carvache-Franco
Sustainability 2025, 17(11), 4899; https://doi.org/10.3390/su17114899 - 27 May 2025
Viewed by 1176
Abstract
Coastal tourism benefits the sustainability of destinations and includes a wide range of experiences related to sun and sand, culture, nature, and social interactions. This study aimed to (i) identify the motivations driving tourists to coastal destinations, (ii) determine the tourist segments in [...] Read more.
Coastal tourism benefits the sustainability of destinations and includes a wide range of experiences related to sun and sand, culture, nature, and social interactions. This study aimed to (i) identify the motivations driving tourists to coastal destinations, (ii) determine the tourist segments in these destinations, and (iii) examine the relationship between these tourist segments and satisfaction and loyalty. The research was conducted in Montañita, Ecuador, a renowned surfing and water sports destination frequented by both national and international tourists. The sample consisted of 380 valid questionnaires, analyzed using factor analysis, K-means clustering, and Pearson’s chi-square test. The findings revealed five motivational dimensions: Culture and Nature, Novelty and Social Interaction, Sun and Beach, Sports, and Entertainment. Two distinct tourist segments were also identified: Multiple Motives tourists and Sun and Beach tourists. Among these, the Multiple Motives group exhibited higher levels of satisfaction and loyalty. These insights are valuable for destination managers and tourism service providers, offering practical applications for enhancing visitor experiences. Additionally, this study contributes to the existing academic literature on coastal tourism. Full article
(This article belongs to the Special Issue Sustainable Tourism Management and Marketing)
Show Figures

Figure 1

24 pages, 2715 KiB  
Article
Assessing the Accuracy of 3D Modeling of Hydrotechnical Structures Using Bathymetric Drones: A Study of the Karatomara Reservoir
by Mikhail Zarubin, Seitbek Kuanyshbayev, Vadim Chashkov, Aliya Yskak, Almabek Nugmanov, Olga Salykova, Artem Bashev and Adil Nurpeisov
Sustainability 2025, 17(11), 4858; https://doi.org/10.3390/su17114858 - 26 May 2025
Viewed by 446
Abstract
In recent years, Kazakhstan has faced the problem of sustainable development in the field of operation of a number of reservoirs: periods of drought lead to a systematic decrease in accumulated fresh water reserves, and the flood of 2024 led to the flooding [...] Read more.
In recent years, Kazakhstan has faced the problem of sustainable development in the field of operation of a number of reservoirs: periods of drought lead to a systematic decrease in accumulated fresh water reserves, and the flood of 2024 led to the flooding of a number of settlements. The article raises questions about the real state of the region’s reservoirs (using the example of the Karatomar reservoir), the accuracy of the conducted bathymetric studies, and the correctness of estimating the required step (or distance between the control points being taken) of the tacks (trajectory lines) of the measurement, which was carried out using the Apache 3 bathymetric drone. The study of the patterns of modeling accuracy from the frequency of tacks (trajectory lines) was carried out using kriging methods. Reservoir models were built in QGis and Surfe. When analyzing the coastline, Sentinel-2 space images and Kazvodkhoz (Kazakhstani state enterprise) data were used. The result of the study was an algorithm for determining the step of tacks (trajectory lines) for modern bottom geomorphology. The conducted research has shown that over 78 years of use, the reservoir’s parameters have undergone significant changes. A similar situation of significant deterioration in parameters is characteristic of other hydrotechnical structures in the region. Full article
Show Figures

Figure 1

13 pages, 3620 KiB  
Article
Dynamics and Transformation of Internal Waves on a Shelf with Decreasing Depth
by Grigory Dolgikh, Sergey Budrin and Stanislav Dolgikh
J. Mar. Sci. Eng. 2025, 13(6), 1030; https://doi.org/10.3390/jmse13061030 - 24 May 2025
Viewed by 375
Abstract
Based on the field data of laser interference devices obtained on the shelf of the Sea of Japan, the interaction of internal sea waves with the bottom and the transfer of energy from the sea wave to the seismic acoustic wave were studied. [...] Read more.
Based on the field data of laser interference devices obtained on the shelf of the Sea of Japan, the interaction of internal sea waves with the bottom and the transfer of energy from the sea wave to the seismic acoustic wave were studied. It has been established that when internal waves move from the depth dump to the surf zone, they transform, and their period decreases. When the energy of the internal wave is transformed into elastic bottom vibrations, the flow density is estimated to spread evenly over a shelf about 30 km wide. Taking into account the maximum amplitudes of elastic bottom vibrations caused by offshore internal waves, the density of the seismic energy flux will increase by 2–3 orders of magnitude and will be comparable to the density of the seismic energy flux caused by surface sea waves. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

14 pages, 1916 KiB  
Article
Clinical Characteristics and Genetic Variants in Children with PAX2 Mutation-Associated Disorders
by Yanyan Jin, Na Li, Zipei Chen, Ke Zeng, Jingjing Wang, Aiqin Sheng, Haidong Fu, Lidan Hu and Jianhua Mao
Medicina 2025, 61(6), 959; https://doi.org/10.3390/medicina61060959 - 22 May 2025
Viewed by 477
Abstract
Background and Objectives: PAX2 serves as a critical transcription factor integral to the process of embryogenesis. Variations in the PAX2 gene could result in the aberrant development of numerous organs. Despite the identification of numerous mutations within the PAX2 gene, the correlation between [...] Read more.
Background and Objectives: PAX2 serves as a critical transcription factor integral to the process of embryogenesis. Variations in the PAX2 gene could result in the aberrant development of numerous organs. Despite the identification of numerous mutations within the PAX2 gene, the correlation between specific genotypes has yet to be fully clarified. The objective of this study was to examine the clinical phenotypes and genotypes associated with PAX2 mutation-induced disorders in pediatric patients of Chinese descent. The aim of our study was to forecast the pathogenic potential of these genetic mutations and to ascertain possible correlations between genotypic variations and the clinical manifestations of disorders linked to PAX2 mutations. Materials and Methods: We recruited 14 pediatric subjects with PAX2 mutations, meticulously examining the clinical characteristics and genetic alterations present in these individuals. Computational techniques were utilized to evaluate the pathogenicity, stability, and biophysical characteristics. A range of computational tools were employed for this assessment, including PredictSNP, MAGPIE, iStable, Align GVGD, ConSurf, and SNP effect. Results: The age at onset ranged from prenatal to 12 years. Five patients progressed to end-stage renal disease. Proteinuria and bilateral renal hypoplasia were observed in 92% of cases. Ocular and auditory abnormalities were also noted. We identified eleven different PAX2 mutations, including five novel variants not previously reported in the literature. We predicted that all mutations, with the exception of p.F27-L33 del and N188S, exhibited high pathogenicity scores. In particular, R117P and R140W are strongly associated with disease pathogenicity and are likely to cause more significant damage than other gene mutants. Conclusions: This study expands the mutational and phenotypic spectrum of PAX2-related disorders in the pediatric population. The identification of five novel variants enhances our understanding of the genetic basis of these conditions. Despite recurrent mutations, marked phenotypic heterogeneity persists, underscoring the need for further research. Full article
(This article belongs to the Section Pediatrics)
Show Figures

Figure 1

Back to TopTop