Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (822)

Search Parameters:
Keywords = STAT inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2414 KiB  
Review
Breaking Down Osteoarthritis: Exploring Inflammatory and Mechanical Signaling Pathways
by Wafa Ali Batarfi, Mohd Heikal Mohd Yunus, Adila A. Hamid, Manira Maarof and Rizal Abdul Rani
Life 2025, 15(8), 1238; https://doi.org/10.3390/life15081238 - 4 Aug 2025
Abstract
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the [...] Read more.
Osteoarthritis (OA) is a chronic progressive joint disease characterized by cartilage degradation, subchondral bone remodeling, and synovial inflammation. This complex disorder arises from the interplay between mechanical stress and inflammatory processes, which is mediated by interconnected molecular signaling pathways. This review explores the dual roles of inflammatory and mechanical signaling in OA pathogenesis, focusing on crucial pathways such as NF-kB, JAK/STAT, and MAPK in inflammation, as well as Wnt/β-catenin, Integrin-FAK, and Hippo-YAP/TAZ in mechanotransduction. The interplay between these pathways highlights a vicious cycle wherein mechanical stress exacerbates inflammation, and inflammation weakens cartilage, increasing its vulnerability to mechanical damage. Additionally, we discuss emerging therapeutic strategies targeting these pathways, including inhibitors of cartilage-degrading enzymes, anti-inflammatory biologics, cell-based regenerative approaches, and non-pharmacological mechanical interventions. By dissecting the molecular mechanisms underlying OA, this review aims to provide insights into novel interventions that address both inflammatory and mechanical components of the disease, paving the way for precision medicine in OA management. Full article
(This article belongs to the Special Issue Current Views on Knee Osteoarthritis: 3rd Edition)
Show Figures

Figure 1

14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 63
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

17 pages, 5703 KiB  
Review
IFN γ and the IFN γ Signaling Pathways in Merkel Cell Carcinoma
by Lina Song, Jinye Guan, Qunmei Zhou, Wenshang Liu, Jürgen C. Becker and Dan Deng
Cancers 2025, 17(15), 2547; https://doi.org/10.3390/cancers17152547 - 1 Aug 2025
Viewed by 181
Abstract
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, [...] Read more.
Recent preclinical and clinical studies have confirmed the essential role of interferons in the host’s immune response against malignant cells. Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer strongly associated with Merkel cell polyomavirus (MCPyV). Despite progress in understanding MCC pathogenesis, the role of innate immune signaling, particularly interferon-γ (IFN γ) and its downstream pathways, remains underexplored. This review summarizes recent findings on IFN-γ in MCC, highlighting its dual role in promoting both antitumor immunity and immune evasion. IFN-γ enhances cytotoxic T cell responses, upregulates MHC class I/II expression, and induces tumor cell apoptosis. Transcriptomic studies have shown that IFN-γ treatment upregulates immune-regulatory genes including PD-L1, HLA-A/B/C, and IDO1 by over threefold; it also activates APOBEC3B and 3G, contributing to antiviral defense and tumor editing. Clinically, immune checkpoint inhibitors (ICIs) such as pembrolizumab and avelumab yield objective response rates of 30–56% and two-year overall survival rates exceeding 60% in advanced MCC. However, approximately 50% of patients do not respond, in part due to IFN-γ signaling deficiencies. This review further discusses IFN-γ’s crosstalk with the STAT1/3/5 pathways and emerging combination strategies aimed at restoring immune sensitivity. Understanding these mechanisms may inform personalized immunotherapeutic approaches and guide the development of IFN-γ–based interventions in MCC. Full article
(This article belongs to the Special Issue Histopathology and Pathogenesis of Skin Cancer)
Show Figures

Figure 1

25 pages, 3263 KiB  
Article
Repurposing Nirmatrelvir for Hepatocellular Carcinoma: Network Pharmacology and Molecular Dynamics Simulations Identify HDAC3 as a Key Molecular Target
by Muhammad Suleman, Hira Arbab, Hadi M. Yassine, Abrar Mohammad Sayaf, Usama Ilahi, Mohammed Alissa, Abdullah Alghamdi, Suad A. Alghamdi, Sergio Crovella and Abdullah A. Shaito
Pharmaceuticals 2025, 18(8), 1144; https://doi.org/10.3390/ph18081144 - 31 Jul 2025
Viewed by 270
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies worldwide, characterized by remarkable molecular heterogeneity and poor clinical outcomes. Despite advancements in diagnosis and treatment, the prognosis for HCC remains dismal, largely due to late-stage diagnosis and limited therapeutic [...] Read more.
Background: Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies worldwide, characterized by remarkable molecular heterogeneity and poor clinical outcomes. Despite advancements in diagnosis and treatment, the prognosis for HCC remains dismal, largely due to late-stage diagnosis and limited therapeutic efficacy. Therefore, there is a critical need to identify novel therapeutic targets and explore alternative strategies, such as drug repurposing, to improve patient outcomes. Methods: In this study, we employed network pharmacology, molecular docking, and molecular dynamics (MD) simulations to explore the potential therapeutic targets of Nirmatrelvir in HCC. Results: Nirmatrelvir targets were predicted through SwissTarget (101 targets), SuperPred (1111 targets), and Way2Drug (38 targets). Concurrently, HCC-associated genes (5726) were retrieved from DisGeNet. Cross-referencing the two datasets identified 29 overlapping proteins. A protein–protein interaction (PPI) network constructed from the overlapping proteins was analyzed using CytoHubba, identifying 10 hub genes, with HDAC1, HDAC3, and STAT3 achieving the highest degree scores. Molecular docking revealed a strong binding affinity of Nirmatrelvir to HDAC1 (docking score = −7.319 kcal/mol), HDAC3 (−6.026 kcal/mol), and STAT3 (−6.304 kcal/mol). Moreover, Nirmatrelvir displayed stable dynamic behavior in repeated 200 ns simulation analyses. Binding free energy calculations using MM/GBSA showed values of −23.692 kcal/mol for the HDAC1–Nirmatrelvir complex, −33.360 kcal/mol for HDAC3, and −21.167 kcal/mol for STAT3. MM/PBSA analysis yielded −17.987 kcal/mol for HDAC1, −27.767 kcal/mol for HDAC3, and −16.986 kcal/mol for STAT3. Conclusions: The findings demonstrate Nirmatrelvir’s strong binding affinity towards HDAC3, underscoring its potential for future drug development. Collectively, the data provide computational evidence for repurposing Nirmatrelvir as a multi-target inhibitor in HCC therapy, warranting in vitro and in vivo studies to confirm its clinical efficacy and safety and elucidate its mechanisms of action in HCC. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

23 pages, 882 KiB  
Review
Toward Precision Medicine: Molecular Biomarkers of Response to Tofacitinib in Inflammatory Bowel Disease
by Anja Bizjak, Boris Gole, Gregor Jezernik, Uroš Potočnik and Mario Gorenjak
Genes 2025, 16(8), 908; https://doi.org/10.3390/genes16080908 - 29 Jul 2025
Viewed by 292
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), is a chronic, relapsing inflammatory condition that significantly impairs the patient’s quality of life. While biologics have transformed disease management, a substantial number of patients remain unresponsive or lose efficacy over time. Tofacitinib [...] Read more.
Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), is a chronic, relapsing inflammatory condition that significantly impairs the patient’s quality of life. While biologics have transformed disease management, a substantial number of patients remain unresponsive or lose efficacy over time. Tofacitinib (TOFA), an oral Janus kinase (JAK) inhibitor, introduces a novel therapeutic class of small-molecule drugs with a unique oral administration route, offering enhanced patient convenience and broader accessibility compared to parenterally administered biologics. As the first oral treatment approved for moderate to severe UC in years, TOFA acts by modulating the JAK/STAT pathway, influencing critical inflammatory mediators such as IL-6, IL-17, and IFN-γ. However, response rates are variable and appear dose-dependent, with up to 60% of patients showing inadequate therapeutic outcomes. This review represents the first comprehensive synthesis focused specifically on biomarkers of TOFA response in UC. Drawing on multi-omics data—epigenomics, transcriptomics, proteomics, and cellular profiling, we highlight emerging predictors of responsiveness, including CpG methylation signatures (e.g., LRPAP1 and FGFR2), transcriptomic regulators (e.g., REG3A and CLDN3), immune and epithelial cell shifts, and the cationic transporter MATE1. TOFA demonstrates a dual mechanism by modulating immune responses while supporting epithelial barrier restoration. Despite being promising, TOFA’s dose-dependent efficacy and interpatient variability underscore the critical need for non-invasive, predictive biomarkers to guide personalized treatment. As the first review of its kind, this work establishes a basis for precision medicine approaches to optimize the clinical utility of TOFA in UC management. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 5260 KiB  
Review
Disrupting Cell Cycle Machinery: CREPT Is an Emerging Target in Cancer Therapy
by Umar Farooq, Jun Li and Zhijie Chang
Cancers 2025, 17(14), 2401; https://doi.org/10.3390/cancers17142401 - 19 Jul 2025
Viewed by 611
Abstract
The transcriptional co-factor cell-cycle-related and expression-elevated protein in tumors (CREPT) has emerged as a critical driver of the cell cycle and a significant contributor to tumorigenesis. The aberrant expression or upregulation of CREPT boosts multiple signaling pathways, including Wnt/β-catenin, STAT3 and NF-κB/TNFR2, which [...] Read more.
The transcriptional co-factor cell-cycle-related and expression-elevated protein in tumors (CREPT) has emerged as a critical driver of the cell cycle and a significant contributor to tumorigenesis. The aberrant expression or upregulation of CREPT boosts multiple signaling pathways, including Wnt/β-catenin, STAT3 and NF-κB/TNFR2, which are frequently dysregulated in various cancers and are associated with poor overall survival. In preclinical studies, CREPT knockdown via shRNA has demonstrated sustained tumor growth regression. Recent researches have uncovered additional functions of CREPT, including roles in metabolic regulation, tissue repair, and microenvironmental remodeling, further establishing it as a pleiotropic transcriptional regulator. Currently, there is no therapeutic agent that directly inhibits CREPT expression in clinic. However, miRNAs and other methods have been used to target CREPT, which have yielded useful results in inhibiting tumor growth. In this review, we discuss the role of CREPT in the hallmarks of cancer and propose that targeting CREPT will reverse tumor growth and may improve the immune checkpoint inhibitors in combination in CREPT-driven cancers. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

41 pages, 2822 KiB  
Review
Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting
by Agnieszka Nowacka, Martyna Śniegocka, Maciej Śniegocki and Ewa Aleksandra Ziółkowska
Cells 2025, 14(14), 1113; https://doi.org/10.3390/cells14141113 - 19 Jul 2025
Viewed by 909
Abstract
Sirtuins (SIRTs), a family of NAD+-dependent enzymes, play crucial roles in epigenetic regulation, metabolism, DNA repair, and stress response, making them relevant to glioma biology. This review systematically summarizes the molecular mechanisms and context-specific functions of SIRT1–SIRT7 in central nervous system tumors, with [...] Read more.
Sirtuins (SIRTs), a family of NAD+-dependent enzymes, play crucial roles in epigenetic regulation, metabolism, DNA repair, and stress response, making them relevant to glioma biology. This review systematically summarizes the molecular mechanisms and context-specific functions of SIRT1–SIRT7 in central nervous system tumors, with particular focus on gliomas. SIRT1, SIRT3, SIRT5, and SIRT7 are often overexpressed and promote glioma cell proliferation, stemness, therapy resistance, and metabolic adaptation. Conversely, SIRT2, SIRT4, and SIRT6 generally exhibit tumor-suppressive functions by inducing apoptosis, inhibiting invasion, and counteracting oncogenic signaling. Preclinical studies have identified several sirtuin modulators—both inhibitors and activators—that alter tumor growth, sensitize cells to temozolomide, and regulate pathways such as JAK2/STAT3, NF-κB, and mitochondrial metabolism. Emerging evidence positions sirtuins as promising targets for glioma therapy. Future studies should evaluate sirtuin modulators in clinical trials and explore their potential for patient stratification and combined treatment strategies. Full article
Show Figures

Figure 1

18 pages, 7149 KiB  
Article
Co-Inhibition of PARP and STAT3 as a Promising Approach for Triple-Negative Breast Cancer
by Changyou Shi, Li Pan, Satomi Amano, Mei-Yi Wu, Chenglong Li and Jiayuh Lin
Biomolecules 2025, 15(7), 1035; https://doi.org/10.3390/biom15071035 - 17 Jul 2025
Viewed by 413
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype known for its rapid metastatic potential. Despite its severity, treatment options for TNBC remain limited. Olaparib, an FDA-approved PARP inhibitor, has been used to treat germline BRCA-mutated TNBC in both metastatic and high-risk [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive subtype known for its rapid metastatic potential. Despite its severity, treatment options for TNBC remain limited. Olaparib, an FDA-approved PARP inhibitor, has been used to treat germline BRCA-mutated TNBC in both metastatic and high-risk early-stage settings. However, acquired resistance to PARP inhibitors and their limited applicability in non-BRCA TNBCs are now two major growing clinical problems. Activation of the IL-6/STAT3 signaling cascade has been implicated in therapeutic resistance. In this study, we evaluated the combined effects of the PARP inhibitor olaparib and the STAT3 inhibitor LLL12B in human TNBC cell lines with both BRCA mutations and wild-type BRCA status. Our results demonstrate that the PARP inhibitor olaparib can induce increased interleukin-6 (IL-6) in TNBC cells, with ELISA showing a 2- to 39-fold increase across five cell lines. MTT assays revealed that knocking down or inhibiting STAT3, a key downstream effector of the IL-6/GP130 pathway, sensitizes TNBC cells to olaparib. Treatment with either olaparib or LLL12B alone reduced TNBC cell viability, migration, and invasion. Notably, their combined administration produced a markedly enhanced inhibitory effect compared to individual treatments, regardless of BRCA mutation status. These findings highlight the potential of dual PARP and STAT3 inhibition as a novel targeted therapeutic strategy for both BRCA-mutant and BRCA-proficient TNBC. Full article
(This article belongs to the Special Issue PARPs in Cell Death and PARP Inhibitors in Cancers: 2nd Edition)
Show Figures

Figure 1

14 pages, 3439 KiB  
Article
The Novel Diketopiperazine Derivative, Compound 5-3, Selectively Inhibited the Proliferation of FLT3-ITD Mutant Acute Myeloid Leukemia (AML) Cells
by Shijie Bi, Yating Cao, Shiyuan Fang, Yanyan Chu, Zixuan Zhang, Meng Li, Rilei Yu, Jinbo Yang, Yu Tang and Peiju Qiu
Mar. Drugs 2025, 23(7), 289; https://doi.org/10.3390/md23070289 - 16 Jul 2025
Viewed by 507
Abstract
The internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with high recurrence and mortality rates in acute myeloid leukemia (AML), making it a critical target for anti-AML therapies. Plinabulin is a diketopiperazines derivative that exhibits extensive anti-cancer potency by [...] Read more.
The internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with high recurrence and mortality rates in acute myeloid leukemia (AML), making it a critical target for anti-AML therapies. Plinabulin is a diketopiperazines derivative that exhibits extensive anti-cancer potency by targeting β-tubulin. We designed and synthesized a novel FLT3 inhibitor, namely 5-3, based on the structure of plinabulin and evaluated its effect on FLT3-ITD mutant AML cells. The results indicated that 5-3 potently and selectively inhibits the growth of mutant FLT3-expressingleukemia cells, and had no effect on FLT3 wide-type cancer cells, suggesting the antiproliferative activity of 5-3 depends highly on FLT3-ITD expression. Mechanically, 5-3 significantly suppressed the phosphorylation of FLT3 signaling pathway, including STAT5, Erk and Akt. Moreover, the efficiency of compound 5-3 is not associated with Plinabulin’s typical target, β-tubulin. In conclusion, the study identified diketopiperazine derivative as a novel FLT3-ITD selective inhibitor. These results demonstrated that 5-3 might be a drug candidate for the treatment of FLT3-ITD-positive AML. Full article
Show Figures

Graphical abstract

20 pages, 2852 KiB  
Article
Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6
by Ankit Joshi, Zhousheng Xiao, Shreya Suman, Connor Cooper, Khanh Ha, James A. Carson, Leigh Darryl Quarles, Jeremy C. Smith and Madhulika Gupta
Molecules 2025, 30(14), 2919; https://doi.org/10.3390/molecules30142919 - 10 Jul 2025
Viewed by 560
Abstract
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and [...] Read more.
Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. As a critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high-throughput structure-based computational screening using ensemble docking for small-molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein. Prior knowledge of the contact sites from binary complex studies and experimental work was incorporated into the docking studies. The top 20 scoring ligands from the in silico studies after post analysis were subjected to in vitro functional assays. Among these compounds, the ligand with the second-highest calculated binding affinity experimentally showed an ~84% inhibitory effect on IL6-induced STAT3 reporter activity at 10 μM concentration. This finding may pave the way for designing small-molecule inhibitors of hIL-6 of therapeutic significance. Full article
Show Figures

Graphical abstract

22 pages, 3155 KiB  
Article
Dissecting the Immunological Microenvironment of Glioma Based on IDH Status: Implications for Immunotherapy
by Miyu Kikuchi, Hirokazu Takami, Yukari Kobayashi, Koji Nagaoka, Yosuke Kitagawa, Masashi Nomura, Shunsaku Takayanagi, Shota Tanaka, Nobuhito Saito and Kazuhiro Kakimi
Cells 2025, 14(13), 1035; https://doi.org/10.3390/cells14131035 - 7 Jul 2025
Viewed by 463
Abstract
Gliomas, particularly IDH-wildtype ones, are associated with poor prognosis, yet their immunological landscape remains uncertain. We analyzed RNA sequencing data from 55 glioma patients, estimating immune infiltration with CIBERSORTx and immune cell states via Ecotyper. IDH-wildtype gliomas showed significantly higher immune cell infiltration [...] Read more.
Gliomas, particularly IDH-wildtype ones, are associated with poor prognosis, yet their immunological landscape remains uncertain. We analyzed RNA sequencing data from 55 glioma patients, estimating immune infiltration with CIBERSORTx and immune cell states via Ecotyper. IDH-wildtype gliomas showed significantly higher immune cell infiltration (p = 0.002), notably of regulatory T cells (Tregs) and macrophages, and a greater proportion of exhausted T cells compared to IDH-mutant gliomas. Clustering based on immune profiles revealed two groups. Cluster A, enriched for IDH-wildtype cases, exhibited heightened immune infiltration but also marked immunosuppression. Cluster B, which included both IDH-wildtype and mutant cases, showed lower levels of immune infiltration. Tumor-infiltrating lymphocyte (TIL) cultured from IDH-wildtype tumors demonstrated limited expansion following anti-PD-1, a CSF1R inhibitor, or a STAT3 inhibitor treatment, without clear cluster-specific differences. Tumor-reactive TILs were mainly observed in cluster A. These findings highlight that IDH-wildtype gliomas have an immunosuppressive and heterogeneous microenvironment, potentially limiting responses to single-agent immunotherapies. A personalized, multi-targeted approach addressing multiple immunosuppressive mechanisms may be essential to improve immunotherapy outcomes in this aggressive glioma subgroup. Full article
Show Figures

Figure 1

34 pages, 765 KiB  
Review
Transcription Factors and Methods for the Pharmacological Correction of Their Activity
by Svetlana V. Guryanova, Tatiana V. Maksimova and Madina M. Azova
Int. J. Mol. Sci. 2025, 26(13), 6394; https://doi.org/10.3390/ijms26136394 - 2 Jul 2025
Viewed by 771
Abstract
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered [...] Read more.
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered “undruggable” due to their lack of well-defined binding pockets, recent advances have made it possible to modulate their activity using diverse pharmacological strategies. Major TF families include NF-κB, p53, STATs, HIF-1α, AP-1, Nrf2, and nuclear hormone receptors, which take part in the regulation of inflammation, tumor suppression, cytokine signaling, hypoxia and stress response, oxidative stress, and hormonal response, respectively. TFs can perform multiple functions, participating in the regulation of opposing processes depending on the context. NF-κB, for instance, plays dual roles in immunity and cancer, and is targeted by proteasome and IKKβ inhibitors. p53, often mutated in cancer, is reactivated using MDM2 antagonist Nutlin-3, refunctionalizing compound APR-246, or stapled peptides. HIF-1α, which regulates hypoxic responses and angiogenesis, is inhibited by agents like acriflavine or stabilized in anemia therapies by HIF-PHD inhibitor roxadustat. STATs, especially STAT3 and STAT5, are oncogenic and targeted via JAK inhibitors or novel PROTAC degraders, for instance SD-36. AP-1, implicated in cancer and arthritis, can be inhibited by T-5224 or kinase inhibitors JNK and p38 MAPK. Nrf2, a key antioxidant regulator, can be activated by agents like DMF or inhibited in chemoresistant tumors. Pharmacological strategies include direct inhibitors, activators, PROTACs, molecular glues, and epigenetic modulators. Challenges remain, including the structural inaccessibility of TFs, functional redundancy, off-target effects, and delivery barriers. Despite these challenges, transcription factor modulation is emerging as a viable and promising therapeutic approach, with ongoing research focusing on specificity, safety, and efficient delivery methods to realize its full clinical potential. Full article
(This article belongs to the Topic Research in Pharmacological Therapies, 2nd Edition)
Show Figures

Figure 1

12 pages, 203 KiB  
Review
Descriptive Analysis of Reported Adverse Events Associated with Vitiligo Medications Using FDA Adverse Event Reporting System (FAERS) Databases 2013–2023
by Saleh F. Alqifari, Musaab Habibulla Gari, Jeff J. Guo, Shoroq Alamin, Aya K. Esmail, Abdullah K. Esmail, Heba R. Hamad, Ahmed Aljabri, Amirah M. Alatawi, Laila A. Albishi, Mohammed Olaythah Alraddadi and Helal F. Hetta
Diseases 2025, 13(7), 208; https://doi.org/10.3390/diseases13070208 - 2 Jul 2025
Viewed by 501
Abstract
Vitiligo, an autoimmune disorder causing depigmented skin patches, includes two types, segmental (SV) and non-segmental (NSV). Previously, NSV was off-label treated using Calcineurine inhibitors (Tacrolimus and Pimecrolimus). In 2022, the FDA approved Ruxolitinib cream, targeting the JAK/STAT pathway for NSV treatment based on [...] Read more.
Vitiligo, an autoimmune disorder causing depigmented skin patches, includes two types, segmental (SV) and non-segmental (NSV). Previously, NSV was off-label treated using Calcineurine inhibitors (Tacrolimus and Pimecrolimus). In 2022, the FDA approved Ruxolitinib cream, targeting the JAK/STAT pathway for NSV treatment based on promising results. This research conducts a retrospective descriptive safety assessment of Tacrolimus, Pimecrolimus, and Ruxolitinib safety in vitiligo treatment, utilizing the FDA Adverse Event Reporting System (FAERS) database spanning the period from 2013 to 2023 and including patients aged 2 years and above, encompassing both brand and generic names. A total of 844 adverse event reports involving 388 patients were extracted and categorized into dermatological and systemic groups for analysis. Tacrolimus resulted in 12 hospitalizations, two life-threatening events, and four disabilities. Pimecrolimus exhibited urticaria and pigmentation disorders, with tooth fracture as the primary systemic event. Pericarditis was the predominant systemic side effect of Ruxolitinib, followed by anemia, headache, and urosepsis. Local dermatological side effects reported were generally mild, not warranting treatment cessation. In conclusion, vitiligo significantly impacts patients’ psychological well-being, necessitating continuous post-marketing safety monitoring for topical medications. Full article
15 pages, 1864 KiB  
Article
Administration of Purified Alpha-1 Antitrypsin in Salt-Loaded Hypertensive 129Sv Mice Attenuates the Expression of Inflammatory Associated Proteins in the Kidney
by Van-Anh L. Nguyen, Yunus E. Dogan, Niharika Bala, Erika S. Galban, Sihong Song and Abdel A. Alli
Biomolecules 2025, 15(7), 951; https://doi.org/10.3390/biom15070951 - 30 Jun 2025
Viewed by 384
Abstract
Background: Alpha-1 antitrypsin (AAT) is a multifunctional protease inhibitor that has been shown to have anti-inflammatory properties in various diseases. AAT has been reported to protect against renal injury via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. However, its role in mitigating renal inflammation and [...] Read more.
Background: Alpha-1 antitrypsin (AAT) is a multifunctional protease inhibitor that has been shown to have anti-inflammatory properties in various diseases. AAT has been reported to protect against renal injury via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. However, its role in mitigating renal inflammation and reducing high blood pressure induced by salt-loading has never been studied. Methods: In this study, we salt-loaded 129Sv mice to induce hypertension and then administered purified human AAT (hAAT) or the vehicle to investigate whether renal inflammation and associated inflammatory/signaling pathways are mitigated. Results: Western blotting and densitometric analysis showed administration of hAAT attenuated protein expression of kidney injury molecule-1 (KIM1), CD93, CD36, and the toll-like receptor 2 and 4 (TLR-2/4) in kidney lysates. Similarly, protein expression of two key inflammatory transcription factors, signal transducer and activator of transcription 3 (STAT3) and NF-Kappa B were shown to be attenuated in the kidneys of 129Sv mice that received hAAT. Conversely, hAAT treatment upregulated the expression of heat shock protein 70 (HSP70) and immunohistochemistry confirmed these findings. Conclusions: Purified hAAT administration may be efficacious in mitigating renal inflammation associated with the development of hypertension from salt-loading, potentially through a mechanism involving the reduction of pro-inflammatory and injury-associated proteins. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 3982 KiB  
Article
The Autophagy Inhibitor Bafilomycin Inhibits Antibody-Dependent Natural Killer Cell-Mediated Killing of Breast Carcinoma Cells
by Ákos M. Bede, Csongor Váróczy, Zsuzsanna Polgár, Gergő Fazekas, Csaba Hegedűs, Endre Kókai, Katalin Kovács and László Virág
Int. J. Mol. Sci. 2025, 26(13), 6273; https://doi.org/10.3390/ijms26136273 - 28 Jun 2025
Viewed by 495
Abstract
The resistance of breast cancer cells to therapeutic antibodies such as anti-HER2 trastuzumab can be overcome by engaging natural killer (NK) cells for killing antibody-binding tumor cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we investigated how autophagy modulation affects trastuzumab-mediated ADCC in HER2-positive [...] Read more.
The resistance of breast cancer cells to therapeutic antibodies such as anti-HER2 trastuzumab can be overcome by engaging natural killer (NK) cells for killing antibody-binding tumor cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we investigated how autophagy modulation affects trastuzumab-mediated ADCC in HER2-positive JIMT1 breast cancer cells and NK cells. Autophagy inducers (rapamycin and resveratrol) had no significant impact, but the inhibitor bafilomycin nearly abolished ADCC. Protection occurred when either cancer or NK cells were pretreated, indicating dual effects. Bafilomycin reduced phosphatidylserine externalization, the loss of plasma membrane integrity, caspase-3/7 activity, and DNA fragmentation. It downregulated pro-apoptotic BAK1 and BAX without altering BCL-2. Additionally, bafilomycin decreased HER2 surface expression, impairing trastuzumab binding, and modulated immune regulators (STAT1, CD95, and PD-L1) in NK and/or in the cancer cells. Bafilomycin disrupted HER2 trafficking and induced HER2 internalization, leading to its accumulation in cytoplasmic vesicles. These findings show that autophagy inhibition by bafilomycin confers ADCC resistance by altering apoptosis, immune signaling, and HER2 dynamics. The study underscores autophagy’s role in antibody-based cancer therapy efficacy. Full article
Show Figures

Figure 1

Back to TopTop