Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = SAR antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3314 KiB  
Article
Antenna Model with Pattern Optimization Based on Genetic Algorithm for Satellite-Based SAR Mission
by Saray Sánchez-Sevilleja, Marcos García-Rodríguez, José Luis Masa-Campos and Juan Manuel Cuerda-Muñoz
Sensors 2025, 25(15), 4835; https://doi.org/10.3390/s25154835 - 6 Aug 2025
Abstract
Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process [...] Read more.
Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process is the antenna model, which serves as a fundamental reference for characterizing the radiation pattern, gain, and overall performance of SAR systems. The present paper sets out to describe the implementation and validation of a phased-array antenna model for Synthetic Aperture Radar Systems (SARAS) in MATLAB R2024a. The antenna model was developed for utilization in the Spanish Earth observation missions PAZ and PRECURSOR-ECO. The antenna model incorporates a number of functions, which are divided into two primary modules: the first of these is the antenna pattern generation (APG) module, and the second is the antenna excitation generation (AEG) module. The present document focuses on the AEG, the function of which is to generate patterns for all required beams. These patterns are optimized and matched to specific calculated masks using an ad hoc genetic algorithm (GA). In consideration of the aforementioned factors, the AEG module generates a set of complex excitations corresponding to the required beam from different satellite operational beams, based on several radiometrically defined parameters.  Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
37 pages, 9111 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Viewed by 318
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
Show Figures

Figure 1

13 pages, 4772 KiB  
Article
Design of Low-SAR High-Efficiency Terminal Antenna Using Magnetic Field Homogenization
by Sihan Xiao, Yong-Chang Jiao, Ziming Lv, Liupeng Zan and Zibin Weng
Micromachines 2025, 16(8), 856; https://doi.org/10.3390/mi16080856 - 25 Jul 2025
Viewed by 236
Abstract
A low-SAR high-efficiency terminal antenna based on the magnetic field homogenization is proposed in this paper. Starting from the spatial correlation between the antenna’s near-field tangential magnetic field hotspots and SAR distribution, the influence of hotspot distribution on SAR was analyzed, and we [...] Read more.
A low-SAR high-efficiency terminal antenna based on the magnetic field homogenization is proposed in this paper. Starting from the spatial correlation between the antenna’s near-field tangential magnetic field hotspots and SAR distribution, the influence of hotspot distribution on SAR was analyzed, and we found that a homogenized tangential magnetic field distribution can reduce the SAR without compromising the radiation efficiency. Based on the SAR reduction mechanism, a low-SAR high-efficiency terminal antenna was designed. By adjusting the magnetic field distributions on two planes with the highest initial SARs, 39% and 27% SAR reduction is achieved, respectively. Measurement results show that the antenna operates in the 3.3 GHz to 3.8 GHz band, with a radiation efficiency exceeding 69%, and a peak 10 g average SAR of 1.39 W/kg at 3.6 GHz. Full article
Show Figures

Figure 1

29 pages, 5555 KiB  
Review
The Development of a Spaceborne SAR Based on a Reflector Antenna
by Yongfei Huang, Weidong Yu, Qiang Lin, Wenbao Li and Yihang Feng
Remote Sens. 2025, 17(14), 2432; https://doi.org/10.3390/rs17142432 - 14 Jul 2025
Viewed by 515
Abstract
In recent years, synthetic aperture radars (SARs) have been widely applied in various fields due to their all-weather, day-and-night global imaging capabilities. As one of the most common types of antennas, the reflector antenna offers some advantages for spaceborne radars, including low cost, [...] Read more.
In recent years, synthetic aperture radars (SARs) have been widely applied in various fields due to their all-weather, day-and-night global imaging capabilities. As one of the most common types of antennas, the reflector antenna offers some advantages for spaceborne radars, including low cost, lightweight, high gain, high radiation efficiency, and low sidelobes. Consequently, spaceborne SAR systems based on reflector antennas exhibit significant potential. This paper reviews the main types and characteristics of reflector antennas, with particular attention to the structural configurations and feed arrangements of deployable reflector antennas in spaceborne SAR applications. Additionally, some emerging techniques, such as digital beamforming, staggered SAR, and SweepSAR based on reflector antennas, are examined. Finally, future development directions in this field are discussed, including high-resolution wide-swath imaging and advanced antenna deployment schemes. Full article
Show Figures

Figure 1

15 pages, 3428 KiB  
Article
An Enhanced Circularly Polarized Textile Antenna Using a Metasurface and Slot-Patterned Ground for Off-Body Communications
by Yong-Deok Kim, Tu Tuan Le and Tae-Yeoul Yun
Micromachines 2025, 16(7), 799; https://doi.org/10.3390/mi16070799 - 9 Jul 2025
Viewed by 343
Abstract
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an [...] Read more.
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an orthogonal direction with equal magnitude and a 90° phase difference, converts the linearly polarized (LP) wave, radiated from the fundamental radiator with a corner-truncated slot square-patch configuration, into being CP. The SPG, consisting of periodic slots with two different sizes of corner-truncated slots, redistributes the surface current on the ground plane, enhancing the axial ratio bandwidth (ARBW) of the proposed antenna. The novel combination of MS and SPG not only enables the generation and enhancement of CP characteristics but also significantly improves the impedance bandwidth (IBW), gain, and radiation efficiency by introducing additional surface wave resonances. The proposed antenna is composed of a conductive textile and a felt substrate, offering comfort and flexibility for applications where the antenna is placed in close proximity to the human body. The proposed antenna is simulated under bending in various directions, showing exceptionally similar characteristics to a flat condition. The proposed antenna is fabricated and is then verified by measurements in both free space and a human body environment. The measured IBW is 36.3%, while the ARBW is 18%. The measured gain and radiation efficiency are 6.39 dBic and 64.7%, respectively. The specific absorption rate (SAR) is simulated, and the results satisfy both US and EU safety standards. Full article
(This article belongs to the Special Issue Metasurface-Based Devices and Systems)
Show Figures

Figure 1

23 pages, 2620 KiB  
Article
An Efficient SAR Raw Signal Simulator Accounting for Large Trajectory Deviation
by Shaoqi Dai, Haiyan Zhang, Cheng Wang, Zhongwei Lin, Yi Zhang and Jinhe Ran
Sensors 2025, 25(14), 4260; https://doi.org/10.3390/s25144260 - 9 Jul 2025
Viewed by 233
Abstract
A synthetic aperture radar (SAR) raw signal simulator is useful for supporting algorithm innovation, system scheme verification, etc. Trajectory deviation is a realistic factor that should be considered in a SAR raw signal simulator and is very important for applications such as motion [...] Read more.
A synthetic aperture radar (SAR) raw signal simulator is useful for supporting algorithm innovation, system scheme verification, etc. Trajectory deviation is a realistic factor that should be considered in a SAR raw signal simulator and is very important for applications such as motion composition and image formation for a SAR with nonlinear trajectory. However, existing efficient simulators become deteriorated and even invalid when the magnitude of trajectory deviation increases. Therefore, we designed an efficient SAR raw signal simulator that accounts for large trajectory deviation. Based on spatial spectrum analysis of the SAR raw signal, it is disclosed and verified that the 2D spatial frequency spectrum of the SAR raw signal is an arc of a circle at a fixed transmitted signal frequency. Based on this finding, the proposed method calculates the SAR raw signal by curvilinear integral in the 2D frequency domain. Compared with existing methods, it can precisely simulate the SAR raw signal in the case that the deviation radius is much larger. Moreover, taking advantage of the fast Fourier transform (FFT), the computational complexity of this method is much less than the time-domain ones. Furthermore, this method is applicable for multiple SAR acquisition modes and diverse waveforms and compatible with radar antenna beam width, squint angle, radar signal bandwidth, and trajectory fluctuation. Experimental results show its outstanding performance for simulating the raw signal of SAR with large trajectory deviation. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 978
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

11 pages, 1898 KiB  
Communication
Simulation Design of an Elliptical Loop-Microstrip Array for Brain Lobe Imaging with an 11.74 Tesla MRI System
by Daniel Hernandez, Taewoo Nam, Eunwoo Lee, Yeji Han, Yeunchul Ryu, Jun-Young Chung and Kyoung-Nam Kim
Sensors 2025, 25(13), 4021; https://doi.org/10.3390/s25134021 - 27 Jun 2025
Viewed by 272
Abstract
Magnetic resonance imaging (MRI) is a powerful medical imaging technique used for acquiring high-resolution anatomical and functional images of the human body. With the development of an 11.74 Tesla (T) human MRI system at our facility, we are designing novel radiofrequency (RF) coils [...] Read more.
Magnetic resonance imaging (MRI) is a powerful medical imaging technique used for acquiring high-resolution anatomical and functional images of the human body. With the development of an 11.74 Tesla (T) human MRI system at our facility, we are designing novel radiofrequency (RF) coils optimized for brain imaging at ultra-high fields. To meet specific absorption rate (SAR) safety limits, this study focuses on localized imaging of individual brain lobes rather than whole-brain array designs. Conventional loop coils, while widely used, offer limited |B1|-field uniformity at 500 MHz—the Larmor frequency at 11.74 T, which can reduce image quality. Therefore, it is important to develop antennas and coils for highly uniform fields. As an alternative, we propose an elliptical microstrip design, which combines the compact resonant properties of microstrips with the enhanced field coverage provided by loop geometry. We simulated a three-element elliptical microstrip array and compared its performance with a conventional loop coil. The proposed design demonstrated improved magnetic field uniformity and coverage across targeted brain regions. Preliminary bench-top validation confirmed the feasibility of resonance tuning at 500 MHz, supporting its potential for future high-field MRI applications. Full article
(This article belongs to the Special Issue Advanced Biomedical Imaging and Signal Processing)
Show Figures

Figure 1

17 pages, 8684 KiB  
Article
Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation
by Yufan Song, Hui Bi, Fuxuan Cai, Guoxu Li, Jingjing Zhang and Wen Hong
Sensors 2025, 25(13), 3888; https://doi.org/10.3390/s25133888 - 22 Jun 2025
Viewed by 390
Abstract
To satisfy the requirement of the modern spaceborne synthetic aperture radar (SAR) system, SAR imaging mode design makes a trade-off between resolution and swath coverage by controlling radar antenna sweeping. Existing spaceborne SAR systems can perform earth observation missions well in various modes, [...] Read more.
To satisfy the requirement of the modern spaceborne synthetic aperture radar (SAR) system, SAR imaging mode design makes a trade-off between resolution and swath coverage by controlling radar antenna sweeping. Existing spaceborne SAR systems can perform earth observation missions well in various modes, but they still face challenges in data acquisition, storage, and transmission, especially for high-resolution wide-swath imaging. In the past few years, sparse signal processing technology has been introduced into SAR to try to solve these problems. In addition, sparse SAR imaging shows huge potential to improve system performance, such as offering wider swath coverage and higher recovered image quality. In this paper, the design scheme of spaceborne sparse SAR imaging modes is systematically introduced. In the mode design, we first design the beam positions of the sparse mode based on the corresponding traditional mode. Then, the essential parameters are calculated for system performance analysis based on radar equations. Finally, a sparse SAR imaging method based on mixed-norm regularization is introduced to obtain a high-quality image of the considered scene from the data collected by the designed sparse modes. Compared with the traditional mode, the designed sparse mode only requires us to obtain a wider swath coverage by reducing the pulse repetition rate (PRF), without changing the existing on-board system hardware. At the same time, the reduction in PRF can significantly reduce the system data rate. The problem of the azimuth ambiguity signal ratio (AASR) increasing from antenna beam scanning can be effectively solved by using the mixed-norm regularization-based sparse SAR imaging method. Full article
(This article belongs to the Special Issue SAR Imaging Technologies and Applications)
Show Figures

Figure 1

20 pages, 10112 KiB  
Article
Radomizing an Antenna for a SAR-Based ETA Radar System While Ensuring Imaging Accuracy: A Focus on Phase Shifts
by María Elena de Cos Gómez, Alicia Flórez Berdasco, Jaime Laviada Martínez and Fernando Las-Heras Andrés
Micromachines 2025, 16(6), 720; https://doi.org/10.3390/mi16060720 - 17 Jun 2025
Viewed by 774
Abstract
The impact of radomization on the radiation pattern of a millimeter-wave antenna for an ETA system utilizing synthetic aperture radar (SAR) is examined with special emphasis placed on the phase shift across both the beamwidth and the bandwidth, rather than the amplitude. Three [...] Read more.
The impact of radomization on the radiation pattern of a millimeter-wave antenna for an ETA system utilizing synthetic aperture radar (SAR) is examined with special emphasis placed on the phase shift across both the beamwidth and the bandwidth, rather than the amplitude. Three different radomization approaches, including one based on metasurfaces, are evaluated for a radar antenna operating within the 24.05–24.25 GHz frequency range. Fabricated prototypes, both of the standalone antenna and the radomized version, are tested and compared in terms of electromagnetic image quality. The metasurface-based radome provides the best results among the radomization options analyzed. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Graphical abstract

17 pages, 3923 KiB  
Article
The Parametrization of Electromagnetic Emissions and Hazards from a Wearable Device for Wireless Information Transfer with a 2.45 GHz ISM Band Antenna
by Patryk Zradziński, Jolanta Karpowicz and Krzysztof Gryz
Appl. Sci. 2025, 15(12), 6602; https://doi.org/10.3390/app15126602 - 12 Jun 2025
Viewed by 346
Abstract
The parameters of electromagnetic emissions from the antenna of a wearable radio communication module (parameterizing device functionality) were investigated at different positions near the body where an antenna is located. The specific absorption rate (SAR) coefficient was also investigated as a way of [...] Read more.
The parameters of electromagnetic emissions from the antenna of a wearable radio communication module (parameterizing device functionality) were investigated at different positions near the body where an antenna is located. The specific absorption rate (SAR) coefficient was also investigated as a way of parameterizing the absorption of electromagnetic radiation in the user’s body adjacent to the antenna in various locations. The modeled exposure scenarios concerned a body-worn device with a 2.45 GHz ISM band antenna (used, e.g., for Wi-Fi 2G/Bluetooth applications). The antennas were modeled as follows: (1) located directly on the body (considered to be a model of a disposable, adhesive device) or (2) next to the body (considered to be a model of a classic, reusable, wearable electronic device located inside a plastic housing). Several body sections adjacent to the antenna were considered: head, arm, forearm, and chest (simplified and anatomical body models were used). The numerical models of the exposure scenarios were verified by relevant laboratory tests using physical models. It was found that the use of simplified models of the human body (numerical or physical) may be sufficient when analyzing antenna performance and SAR in a user’s body, such as in studies regarding microwave imaging and sensing, wireless implantable devices, wireless body-area networks or SAR estimation. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

34 pages, 4041 KiB  
Review
Sensor Technologies for Non-Invasive Blood Glucose Monitoring
by Jiale Shi, Raúl Fernández-García and Ignacio Gil
Sensors 2025, 25(12), 3591; https://doi.org/10.3390/s25123591 - 7 Jun 2025
Viewed by 2040
Abstract
Diabetes poses a significant global health challenge, underscoring the urgent need for accurate and continuous glucose monitoring technologies. This review provides a comprehensive analysis of both invasive and non-invasive sensor technologies, with a particular focus on antenna-sensors and their working principle. Key aspects, [...] Read more.
Diabetes poses a significant global health challenge, underscoring the urgent need for accurate and continuous glucose monitoring technologies. This review provides a comprehensive analysis of both invasive and non-invasive sensor technologies, with a particular focus on antenna-sensors and their working principle. Key aspects, including the selection of substrates and conductive materials, fabrication techniques, and recent advancements in rigid and flexible antenna-sensor designs, are critically evaluated. Notably, textile antenna-sensors are gaining increasing attention due to their potential for seamless integration into daily clothing. Furthermore, the influence of the human body on antenna-sensor performance is examined, emphasizing the importance of human phantom simulation and fabrication for precise modeling and validation. Finally, this review highlights the current technical challenges in the development of flexible antenna-sensors and discusses their transformative potential in enabling next-generation, non-invasive, and patient-centric glucose monitoring solutions. Full article
Show Figures

Figure 1

22 pages, 14388 KiB  
Article
A Dual-Band Flexible MIMO Array Antenna for Sub-6 GHz 5G Communications
by Deepthi Mariam John, Tanweer Ali, Shweta Vincent, Sameena Pathan, Jaume Anguera, Bal Virdee, Rajiv Mohan David, Krishnamurthy Nayak and Sudheesh Puthenveettil Gopi
Sensors 2025, 25(11), 3557; https://doi.org/10.3390/s25113557 - 5 Jun 2025
Viewed by 740
Abstract
This paper presents a novel dual-band flexible antenna, uniquely designed and extended to array as well as MIMO configurations for the Sub-6 GHz band. The single-element monopole antenna features a modified rectangular radiator with two L-strips and a reduced ground plane, enabling a [...] Read more.
This paper presents a novel dual-band flexible antenna, uniquely designed and extended to array as well as MIMO configurations for the Sub-6 GHz band. The single-element monopole antenna features a modified rectangular radiator with two L-strips and a reduced ground plane, enabling a compact dual-band response. The proposed four-element, two-port MIMO configuration is extended from the 1 × 2 array antenna, achieving an overall dimension of 57 × 50 × 0.1 mm3, making it exceptionally compact and flexible compared to existing rigid and bulkier designs. Operating in the 3.6–3.8 GHz and 5.65–5.95 GHz bands, the antenna delivers a high gain of 5.2 dBi and 7.7 dBi, outperforming many designs in terms of gain while maintaining the superior isolation of >22 dB utilizing a defected ground structure (DGS). The design satisfies key MIMO diversity metrics (ECC < 0.05, DG > 9.99) and demonstrates low SAR values (0.0702/0.25 W/kg at 3.75 GHz and 0.175/0.507 W/kg at 5.9 GHz), making it highly suitable for wearable and on-body communication, unlike many rigid counterparts. Fabricated on a flexible polyimide substrate, the antenna addresses challenges such as size, bandwidth, isolation, and safety in MIMO antenna design. The performance, validated through fabrication and measurement, establishes the proposed antenna as a superior alternative to existing MIMO designs for compact, high-performance Sub-6 GHz 5G applications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

25 pages, 4263 KiB  
Article
An Autofocus Method for Long Synthetic Time and Large Swath Synthetic Aperture Radar Imaging Under Multiple Non-Ideal Factors
by Kaiwen Zhu, Zhen Wang, Zehua Dong, Han Li and Linghao Li
Remote Sens. 2025, 17(11), 1946; https://doi.org/10.3390/rs17111946 - 4 Jun 2025
Viewed by 467
Abstract
Synthetic aperture radar (SAR) is an all-weather and all-day imaging technique for Earth observation. Achieving efficient observation, high resolution, and wide swath coverage have remained critical development goals in SAR technology, which inherently require extended synthetic aperture time. However, various non-ideal factors, including [...] Read more.
Synthetic aperture radar (SAR) is an all-weather and all-day imaging technique for Earth observation. Achieving efficient observation, high resolution, and wide swath coverage have remained critical development goals in SAR technology, which inherently require extended synthetic aperture time. However, various non-ideal factors, including atmospheric disturbances, orbital perturbations, and antenna vibrations. degrade imaging performance, causing defocusing and ghost targets. Furthermore, the long synthetic time and large imaging swath further enlarge the temporal and spatial variability of these factors and seriously degrade the imaging effect. These inherent challenges make autofocusing indispensable for SAR imaging with a long synthetic time and large swath. In this paper, a novel autofocus method specifically designed to address these non-ideal factors is proposed for SAR imaging with a long synthetic time and large swath. The innovation of the method mainly consists of two parts. The first is the autofocus for multiple non-ideal factors, which is accomplished by an improved phase gradient autofocus (PGA) equipped with amplitude error estimation and discrete windowing. PGA with amplitude error estimation can solve the problem of defocus, and discrete windowing can focus the energy of paired echoes. The second is an error fusion and interpolation method for a long synthetic time and large swath. This method fuses errors among sub-apertures in the long synthetic time and can fulfill autofocus for blocks where strong scatterers are not sufficient in the large swath. The proposed method can effectively achieve SAR focusing with a long synthetic time and large swath, considering spatial and temporal variant non-ideal factors. Point target simulations and distributed target simulations based on real scenarios are conducted to validate the proposed method. Full article
Show Figures

Graphical abstract

22 pages, 4392 KiB  
Article
Effects of Dielectric Properties of Human Body on Communication Link Margins and Specific Absorption Rate of Implanted Antenna System
by Soham Ghosh, Sunday C. Ekpo, Fanuel Elias, Stephen Alabi and Bhaskar Gupta
Sensors 2025, 25(11), 3498; https://doi.org/10.3390/s25113498 - 31 May 2025
Viewed by 687
Abstract
This study examines how the effective dielectric characteristics of the human torso affect the carrier-link-margin (CLM) and data-link-margin (DLM) of a biocompatible gelatin-encapsulated implantable medical device (IMD) that consists of a small implantable antenna, battery, printed circuit board (PCB), camera, and sensor operating [...] Read more.
This study examines how the effective dielectric characteristics of the human torso affect the carrier-link-margin (CLM) and data-link-margin (DLM) of a biocompatible gelatin-encapsulated implantable medical device (IMD) that consists of a small implantable antenna, battery, printed circuit board (PCB), camera, and sensor operating at 2.5 GHz. The specific absorption rate (SAR) and the radio frequency (RF) link performances of the IMD are tested for ±20% changes in reference to the mean values of the effective relative permittivity, ɛeff, and the effective conductivity, σeff, of the human body model. An artificial neural network (ANN) with two inputs (ɛeff, σeff) and five outputs (SAR_1 g, SAR_10 g, fractional bandwidth, CLM, and DLM) is trained by 80% of the total scenarios and tested by 20% of them in order to provide reliable dependent analyses. The highest changes in 1 g SAR value, 10 g SAR value, fractional bandwidth, CLM, and DLM at a 4 m distance for 100 Kbps are 63%, 41.6%, 17.97%, 26.79%, and 5.89%, respectively, when compared to the reference effective electrical properties of the homogeneous human body model. This work is the first to accurately depend on the electrical analyses of the human body for the link margins of an implantable antenna system. Furthermore, the work’s uniqueness is distinguished by the application of the CLM and DLM principles in the sphere of IMD communication. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop