Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = Rydberg state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 628 KiB  
Article
Accurate Nonrelativistic Energy Calculations for Helium 1snp1,3P (n = 2 to 27) States via Correlated B-Spline Basis Functions
by Jing Chi, Hao Fang, Yong-Hui Zhang, Xiao-Qiu Qi, Li-Yan Tang and Ting-Yun Shi
Atoms 2025, 13(8), 72; https://doi.org/10.3390/atoms13080072 - 4 Aug 2025
Abstract
Rydberg atoms play a crucial role in testing atomic structure theory, quantum computing and simulation. Measurements of transition frequencies from the 21,3S states to Rydberg P1,3 states have reached a precision of several kHz, which poses [...] Read more.
Rydberg atoms play a crucial role in testing atomic structure theory, quantum computing and simulation. Measurements of transition frequencies from the 21,3S states to Rydberg P1,3 states have reached a precision of several kHz, which poses significant challenges for theoretical calculations, since the accuracy of variational energy calculations decreases rapidly with increasing principal quantum number n. Recently the complex “triple” Hylleraas basis was employed to attain the ionization energy of helium 24P1 state with high accuracy. Different from it, we extended the correlated B-spline basis functions (C-BSBFs) to calculate the Rydberg states of helium. The nonrelativistic energies of 1snpP1,3 states up to n=27 achieve at least 14 significant digits using a unified basis set, thereby greatly reducing the complexity of the optimization process. Results of geometric structure parameters and cusp conditions were presented as well. Both the global operator and direct calculation methods are employed and cross-checked for contact potentials. This C-BSBF method not only obtains high-accuracy energies across all studied levels but also confirms the effectiveness of the C-BSBFs in depicting long-range and short-range correlation effects, laying a solid foundation for future high-accuracy Rydberg-state calculations with relativistic and QED corrections included in helium atom and low-Z helium-like ions. Full article
(This article belongs to the Special Issue Atom and Plasma Spectroscopy)
Show Figures

Figure 1

17 pages, 1725 KiB  
Article
Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods
by Pedro A. S. Randi, Márcio H. F. Bettega, Nykola C. Jones, Søren V. Hoffmann, Małgorzata A. Śmiałek and Paulo Limão-Vieira
Molecules 2025, 30(15), 3137; https://doi.org/10.3390/molecules30153137 - 26 Jul 2025
Viewed by 262
Abstract
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 [...] Read more.
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 eV), together with ab initio quantum chemical calculations at the time-dependent density functional (TD-DFT) level of theory. The dominant electronic excitations are assigned to mixed valence-Rydberg and Rydberg transitions. The fine structure in the CH3CHCH2CO2 photoabsorption spectrum has been assigned to C=O stretching, v7a, CH2 wagging, v14a, C–O stretching, v22a, and C=O bending, v26a modes. Photolysis lifetimes in the Earth’s atmosphere from 0 km up to 50 km altitude have been estimated, showing to be a non-relevant sink mechanism compared to reactions with the OH radical. The nuclear dynamics along the C=O and C–C–C coordinates have been investigated at the TD-DFT level of theory, where, upon electronic excitation, the potential energy curves show important carbonyl bond breaking and ring opening, respectively. Within such an intricate molecular landscape, the higher-lying excited electronic states may keep their original Rydberg character or may undergo Rydberg-to-valence conversion, with vibronic coupling as an important mechanism contributing to the spectrum. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

13 pages, 948 KiB  
Article
Extended Photoionization Cross Section Calculations for C III
by V. Stancalie
Appl. Sci. 2025, 15(14), 8099; https://doi.org/10.3390/app15148099 - 21 Jul 2025
Viewed by 216
Abstract
Spectral features of photoionization of various levels of C III are reported. These include characteristics of Rydberg and Seaton resonances, low and high excited levels, lifetimes, and total and partial cross sections. Calculations are performed in the relativistic Breit–Pauli R-matrix method with close-coupling [...] Read more.
Spectral features of photoionization of various levels of C III are reported. These include characteristics of Rydberg and Seaton resonances, low and high excited levels, lifetimes, and total and partial cross sections. Calculations are performed in the relativistic Breit–Pauli R-matrix method with close-coupling approximation, including damping effects on the resonance structure associated with the core-excited states produced by the electron excitation of C IV and photoionization of C III. For bound channel contribution, the close-coupling wavefunction expansion for photoionization includes ground and 14 excited states of the target ion CIV and 105 states configurations of C III. Extensive sets of atomic data for bound fine-structure levels, resulting in 762 dipole-allowed transitions, radiative probabilities, and photoionization cross sections out of Jπ = 0± − 4± fine-structure levels are obtained. The ground-level photoionization cross section smoothly decreases with increasing energy, showing a very narrow, strong Rydberg resonance converging to the CIV 1s22p threshold. The work shows that prominent Seaton resonances for 2sns states with n ≥ 5, caused by photoexcitation of the core electron below the 2p threshold, visibly contribute to photoabsorption from excited states of C III. The present results provide highly accurate parameters of various model applications in plasma spectroscopy. Full article
Show Figures

Figure 1

8 pages, 2367 KiB  
Article
Microwave-Controlled Spectroscopy Evolution for Different Rydberg States
by Yinglong Diao, Haoliang Hu, Xiaofei Li, Zhibo Li, Feitong Zeng, Yanbin Chen and Shuhang You
Photonics 2025, 12(7), 715; https://doi.org/10.3390/photonics12070715 - 16 Jul 2025
Viewed by 224
Abstract
In this paper, a series of electromagnetically-induced-transparent (EIT) spectra of different Rydberg states, controlled by microwaves, in rubidium (Rb) thermal vapor are presented. The novel evolution regularity for different Rydberg states can be found by experimentally detected transmitted EIT spectra, which can reveal [...] Read more.
In this paper, a series of electromagnetically-induced-transparent (EIT) spectra of different Rydberg states, controlled by microwaves, in rubidium (Rb) thermal vapor are presented. The novel evolution regularity for different Rydberg states can be found by experimentally detected transmitted EIT spectra, which can reveal the primary quantum number of different Rydberg states and how to influence microwave control spectroscopy evolution regularity, and which can pave the way in order to address the challenge of selecting Rydberg states for applications in Rydberg microwave field detection. This is helpful for the development of measuring standards of the microwave field in Rydberg states. Full article
Show Figures

Figure 1

10 pages, 347 KiB  
Article
The Evolution of Squeezing in Coupled Macroscopic Mechanical Oscillator Systems
by Xin-Chang Liu, Xiao-Dong Shi, Xiao-Lei Zhang, Ling-Xiao Chen and Yi Zhang
Electronics 2025, 14(14), 2817; https://doi.org/10.3390/electronics14142817 - 13 Jul 2025
Viewed by 277
Abstract
Quantum squeezing in macroscopic oscillator systems plays a critical role in bridging quantum mechanics with classical-scale phenomena, enabling high-precision measurements and fundamental tests of quantum physics. In this work, we investigate the effect of squeezing on the phonon state in a hybrid macroscopic [...] Read more.
Quantum squeezing in macroscopic oscillator systems plays a critical role in bridging quantum mechanics with classical-scale phenomena, enabling high-precision measurements and fundamental tests of quantum physics. In this work, we investigate the effect of squeezing on the phonon state in a hybrid macroscopic mechanical system consisting of an ensemble of Rydberg atoms coupled to two macroscopic mechanical oscillators. We notice that the dipole–dipole coupling between atoms and mechanical oscillators can be transferred to the indirectly coupled mechanical interaction, and the nonlinear effective Hamiltonian can be solved to generate a squeezed effect on the mechanical mode. We also discuss the noise effects induced by amplitude and phase fluctuations on the squeezed quadratures of the system. Full article
Show Figures

Figure 1

9 pages, 533 KiB  
Article
Comparison of Different Rydberg Atom-Based Microwave Electrometry Techniques
by Eliel Leandro Alves Junior, Manuel Alejandro Lefrán Torres, Jorge Douglas Massayuki Kondo and Luis Gustavo Marcassa
Atoms 2025, 13(7), 59; https://doi.org/10.3390/atoms13070059 - 20 Jun 2025
Viewed by 365
Abstract
In this study, we have compared different Rydberg atom-based microwave electrometry techniques under the same experimental conditions and using the same Rydberg states (68S1/2, 68P3/2, and 67P3/2). [...] Read more.
In this study, we have compared different Rydberg atom-based microwave electrometry techniques under the same experimental conditions and using the same Rydberg states (68S1/2, 68P3/2, and 67P3/2). The comparison was carried out for the following techniques: (i) auxiliary microwave field, (ii) microwave amplitude modulation, and (iii) polarization spectroscopy. Our results indicate that all three techniques have a similar minimum measurable microwave electric field. A slightly better result can be obtained by performing polarization spectroscopy using a Laguerre–Gauss coupling laser beam. Full article
(This article belongs to the Section Atom Based Quantum Technology)
Show Figures

Figure 1

19 pages, 35077 KiB  
Article
X-Ray Emissions from Hydrogen Rydberg Matter Detected Using Timepix3 CdTe Detector
by Sindre Andre Zeiner-Gundersen and Sveinn Olafsson
Catalysts 2025, 15(6), 526; https://doi.org/10.3390/catal15060526 - 26 May 2025
Viewed by 727
Abstract
This study investigates the X-ray emissions from Hydrogen Rydberg Matter (HRM) using a state of-the-art Timepix3 detector with a Cadmium Telluride (CdTe) sensor, which offers imaging operation. The experimental setup featured an ultra-high vacuum (UHV) chamber containing potassium-doped iron oxide catalytic source, exposed [...] Read more.
This study investigates the X-ray emissions from Hydrogen Rydberg Matter (HRM) using a state of-the-art Timepix3 detector with a Cadmium Telluride (CdTe) sensor, which offers imaging operation. The experimental setup featured an ultra-high vacuum (UHV) chamber containing potassium-doped iron oxide catalytic source, exposed to hydrogen or deuterium gas flowing through the source. A 1064 nm pulsed YAG laser was used to stimulate the HRM. The Timepix detector was calibrated with Cs-137 662 keV and 21 keV source. Results show a prominent emission peak in the 25–50 keV range, with significant contributions at 406 keV identified through aluminum foil attenuation experiments. These findings advance our understanding of radiation phenomena in hydrogen-loaded systems and suggest new avenues for exploring the unique emissions from HRM, potentially impacting material science and catalysis. Full article
(This article belongs to the Special Issue Catalysis by Metals and Metal Oxides)
Show Figures

Figure 1

13 pages, 903 KiB  
Article
Direct and Indirect Coupling Entanglements in an Optomechanical Cavity Coupled to a Rydberg Superatom
by Dong Yan, Feifan Ren, Lei Huang, Yilongyue Guo, Jing Wang, Kaihui Gu and Hanxiao Zhang
Photonics 2025, 12(5), 472; https://doi.org/10.3390/photonics12050472 - 12 May 2025
Viewed by 391
Abstract
We investigate steady-state entanglement in a hybrid optomechanical cavity coupled to a Rydberg atomic ensemble confined within a single blockade region. The ensemble behaves as one superatom due to the rigid dipole blockade effect. Through optomechanical coupling, three types of bipartite entanglement emerge [...] Read more.
We investigate steady-state entanglement in a hybrid optomechanical cavity coupled to a Rydberg atomic ensemble confined within a single blockade region. The ensemble behaves as one superatom due to the rigid dipole blockade effect. Through optomechanical coupling, three types of bipartite entanglement emerge among the cavity, the Rydberg superatom, and the movable mirror. As the principal quantum number of the Rydberg atoms increases (leading to reduced atomic decay rates), the direct cavity–mirror coupling entanglement is redistributed into direct cavity–superatom coupling entanglement and indirect superatom–mirror coupling entanglement. Counterintuitively, this redistribution culminates in the complete suppression of two direct coupling entanglements, leaving only the indirect coupling entanglement persistent under resonant Stokes sideband conditions. Systematic parameter tuning reveals entanglement transfer pathways and establishes the preference of the superatom–mirror entanglement for specific principal quantum numbers. Furthermore, we demonstrate the thermal robustness of the surviving entanglement up to experimentally accessible temperatures. These findings advance the understanding of quantum entanglement in hybrid quantum systems and suggest applications in quantum information processing. Full article
Show Figures

Figure 1

9 pages, 8350 KiB  
Communication
Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation
by Xiaokai Hou, Yuewei Wang, Jun He and Junmin Wang
Photonics 2025, 12(5), 412; https://doi.org/10.3390/photonics12050412 - 24 Apr 2025
Viewed by 418
Abstract
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) [...] Read more.
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) atoms confined in a magneto-optical trap (MOT) with single-step Rydberg excitation using a 319-nm ultraviolet (UV) laser. A V-type three-level system involving the ground state 6S1/2 (F = 4), excited state 6P3/2 (F = 5), and Rydberg state (nP3/2 (mJ = +3/2)) is theoretically modeled to analyze the nonlinear dependence of the AT doublet’s asymmetry and interval on the cooling laser’s detuning. Experiments reveal that as the cooling laser detuning Δ1 decreases from −15 MHz to −10 MHz, the AT doublet exhibits increasing symmetry, while its interval shows a nonlinear decrease. Theoretical simulations based on the density matrix equation and Lindblad master equation align closely with experimental data, confirming the model’s validity. This study provides insights into quantum interference dynamics in multi-level systems and offers a systematic approach for optimizing precision measurements in cold atom spectroscopy. Full article
Show Figures

Figure 1

11 pages, 3159 KiB  
Article
Stability Assessment of Rydberg Electromagnetically Induced Transparency Locking via Optical Heterodyne Spectroscopy
by Qiuyu Yin, Yanzhao Liang, Haitao Lin, Ning Ji and Thibault Vogt
Photonics 2025, 12(4), 374; https://doi.org/10.3390/photonics12040374 - 13 Apr 2025
Viewed by 530
Abstract
Frequency locking to reference atomic lines using Rydberg electromagnetically induced transparency (EIT) has been recently introduced as an inexpensive and reliable technique for laser frequency stabilization. In this work, we carry out a systematic study of this technique using heterodyne beat spectroscopy. Two [...] Read more.
Frequency locking to reference atomic lines using Rydberg electromagnetically induced transparency (EIT) has been recently introduced as an inexpensive and reliable technique for laser frequency stabilization. In this work, we carry out a systematic study of this technique using heterodyne beat spectroscopy. Two different commercial semi-conductor lasers are locked to the same reference frequency using EIT locking, and their relative frequency stability is analyzed and continuously monitored in real time. A substantial improvement in the laser frequency stability is achieved through searching for the optimal proportional–integral settings and EIT probe laser powers. The results show that the cutoff frequency of the beat signal can be lowered to less than 500 kHz. We also compare the frequencies of free running lasers with that of a locked laser and characterize their frequency drifts. This study is important in assessing the use of Rydberg EIT locking in atomic electrometers. Full article
Show Figures

Figure 1

9 pages, 1308 KiB  
Article
Expansion Dynamics of Rydberg-Dressed Ultracold Fermi Gas
by Meimei Wu, Xin Bao, Shuxian Yu, Shujin Deng and Haibin Wu
Photonics 2025, 12(4), 350; https://doi.org/10.3390/photonics12040350 - 8 Apr 2025
Viewed by 518
Abstract
We present a theoretical investigation into the expansion dynamics of Rydberg-dressed ultracold Fermi gases. The effective interaction potential induced by Rydberg dressing significantly modifies the intrinsic properties and dynamical behavior of the quantum gas. The strength and range of these interactions can be [...] Read more.
We present a theoretical investigation into the expansion dynamics of Rydberg-dressed ultracold Fermi gases. The effective interaction potential induced by Rydberg dressing significantly modifies the intrinsic properties and dynamical behavior of the quantum gas. The strength and range of these interactions can be precisely tuned by varying the intensity and detuning of the applied laser field. By employing mean-field theory and utilizing the density distribution of the atomic cloud to describe the quantum system dynamics, we theoretically describe the time-dependent evolution of the atomic cloud during the free expansion process, encompassing both non-interacting and unitary Fermi gases. Notably, the specific quantum states of the ground-state atoms play a pivotal role in shaping the effective interaction potential within the Rydberg-dressed quantum system. We elucidate how the interaction potential influences the rate and mode of the atom cloud’s expansion by hydrodynamic expansion arising from Rydberg-dressed atoms in distinct spin hyperfine states. This investigation may deepen our understanding of the behavior and interactions in quantum many-body systems and offer broad potential for future applications like the exploration of novel quantum phase transitions and emergent phenomena. Full article
Show Figures

Figure 1

17 pages, 3207 KiB  
Article
Cyclohexane Vibronic States: A Combined VUV Spectroscopy and Theoretical Study
by Edvaldo Bandeira, Alessandra S. Barbosa, Nykola C. Jones, Søren V. Hoffmann, Márcio H. F. Bettega and Paulo Limão-Vieira
Molecules 2025, 30(7), 1493; https://doi.org/10.3390/molecules30071493 - 27 Mar 2025
Viewed by 370
Abstract
In this work, we provide results from a joint experimental and theoretical study of the vibronic features of cyclohexane (C6H12) in the photon energy range of 6.8–10.8 eV (182–115 nm). The high-resolution vacuum ultraviolet (VUV) photoabsorption measurements, together with [...] Read more.
In this work, we provide results from a joint experimental and theoretical study of the vibronic features of cyclohexane (C6H12) in the photon energy range of 6.8–10.8 eV (182–115 nm). The high-resolution vacuum ultraviolet (VUV) photoabsorption measurements, together with quantum chemical calculations at the time-dependent density functional theory (TDDFT) level, have helped to assign the major electronic excitations to mixed valence–Rydberg and Rydberg transitions. The C6H12 photoabsorption spectrum shows fine structure which has been assigned to CH2 scissoring, v3a1g, CH2 rocking, v4a1g, C–C stretching, v5a1g, and CCC bending/CC torsion, v24eg, modes. Molecular structure calculations at the DFT level for the neutral and cationic electronic ground-states have shown the relevant structural changes that are operative in the higher-lying electronic states. Photolysis lifetimes in the Earth’s atmosphere are shown to be irrelevant, while the main atmospheric sink mechanism is the reaction with the OH radical. Potential energy curves have been obtained at the TDDFT level of theory, showing the relevance of interchange character mainly involving the CH2 scissoring, v3a1g, and CH2 rocking, v4a1g, modes, while Jahn–Teller distortion yields weak vibronic coupling involving the non-totally symmetric CCC bending/CC torsion, v24eg, mode. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

8 pages, 8537 KiB  
Communication
Probing nS/nD Rydberg States via 6P3/2 Intermediate Level Using Electromagnetically Induced Transparency in 87Rb
by Donghao Li, Beining Xu, Keyu Qin, Xin Jia, Changtao Zhao, Yaoting Zhou and Zhongxiao Xu
Photonics 2025, 12(3), 204; https://doi.org/10.3390/photonics12030204 - 26 Feb 2025
Viewed by 925
Abstract
We perform precise measurements of the 87Rb Rydberg excitation spectrum by using electromagnetically induced transparency (EIT) in a ladder system. We utilize a two-photon excitation configuration with the probe and control lasers at 420 nm and 1013 nm, respectively. In this work, [...] Read more.
We perform precise measurements of the 87Rb Rydberg excitation spectrum by using electromagnetically induced transparency (EIT) in a ladder system. We utilize a two-photon excitation configuration with the probe and control lasers at 420 nm and 1013 nm, respectively. In this work, we employ 6P3/2,F′ = 3 as an intermediate state to excite the high-lying Rydberg states of the nS and nD series, with principal quantum numbers ranging from n=35 to n=70. To improve the signal-to-noise ratio (SNR) in this inverted level scheme (λp<λc), we apply a 100 kHz chopping to the control beam, which is followed by a demodulation operated with a lock-in amplifier. Additionally, we verify the ionization energies and determine the quantum defects for the nS and nD series, respectively. Our work offers a database for applications of large-scale quantum simulation and quantum computation with the 87Rb atom array. Full article
Show Figures

Figure 1

10 pages, 1251 KiB  
Communication
Engineering Terahertz Light–Matter Interaction with Quantum Electronic Metamaterials
by Igor I. Smolyaninov and Vera N. Smolyaninova
Electronics 2025, 14(4), 679; https://doi.org/10.3390/electronics14040679 - 10 Feb 2025
Viewed by 711
Abstract
While electromagnetic metamaterials completely revolutionized optics and radio frequency engineering, recent progress in the development of conceptually related electronic metamaterials was more slow. Similar to electromagnetic metamaterials, which engineer material response to the electromagnetic field of a photon, the purpose of electronic metamaterials [...] Read more.
While electromagnetic metamaterials completely revolutionized optics and radio frequency engineering, recent progress in the development of conceptually related electronic metamaterials was more slow. Similar to electromagnetic metamaterials, which engineer material response to the electromagnetic field of a photon, the purpose of electronic metamaterials is to affect electron propagation and its wave function by changing material response to its electric field. This makes electronic metamaterials an ideal tool for engineering light–matter interaction in semiconductors and superconductors. Here, we propose the use of Fermi’s quantum refraction, which was previously observed in the terahertz spectroscopy of Rydberg atoms and two-dimensional surface electronic states, as a novel tool in quantum electronic metamaterial design. In particular, we demonstrate several potential applications of this concept in two-dimensional metamaterial superconductors and “universal quantum dots” designed for operation in the terahertz frequency range. Full article
(This article belongs to the Special Issue Terahertz Optics and Spectroscopy)
Show Figures

Figure 1

14 pages, 2030 KiB  
Article
Analysis of Dissipation Mechanisms for Cesium Rydberg Atoms in Magic-Wavelength Optical Trap
by Shaofeng Fan, Yang Liu, Wenyuan Liu, Yang Zhao, Yijun Li and Jiandong Bai
Photonics 2025, 12(2), 138; https://doi.org/10.3390/photonics12020138 - 8 Feb 2025
Viewed by 1132
Abstract
A magic optical dipole trap (ODT) can confine atoms in the ground state and a highly excited state with the same light shifts, resulting in a long-range coherent lifetime between them, which plays an important role in high-fidelity quantum logic gates, multi-body physics [...] Read more.
A magic optical dipole trap (ODT) can confine atoms in the ground state and a highly excited state with the same light shifts, resulting in a long-range coherent lifetime between them, which plays an important role in high-fidelity quantum logic gates, multi-body physics and other quantum information. Here, we use a sum-over-states model to calculate the dynamic polarizabilities of the 6S1/2 ground state and 46S1/2 Rydberg state of Cs atoms and identify corresponding magic wavelengths and magic detunings for trapping the two states in the range of 900–1950 nm. Then, we analyze the robustness of the magic condition and the feasibility of the experimental operation. Furthermore, we estimate the trapping lifetime of Cs Rydberg atoms by considering different dissipation mechanisms, such as photon scattering and photoionization in the magic ODT. The photoexcitation and photoionization of Cs atoms under the action of three-step laser pulses are calculated by the rate equation. The presented results for magic-wavelength ODTs are of great significance for quantum information and quantum computing based on Rydberg atoms. Full article
(This article belongs to the Special Issue Optical Quantum System)
Show Figures

Figure 1

Back to TopTop