Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = QqQ mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 318
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

20 pages, 886 KiB  
Article
Plasma Multiplatform Metabolomics Towards Evaluation of Gender Differences in Pulmonary Arterial Hypertension—A Pilot Study
by Renata Wawrzyniak, Tamara Gaillard, Margot Biesemans, Bożena Zięba, Ewa Lewicka, Michał Markuszewski and Alicja Dąbrowska-Kugacka
Biomedicines 2025, 13(7), 1637; https://doi.org/10.3390/biomedicines13071637 - 4 Jul 2025
Viewed by 464
Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare and severe condition characterized by increased pulmonary arterial pressure and vascular resistance. Women are more susceptible to PAH yet have higher survival rates than men, a phenomenon called the “estrogen paradox”. This study aims to [...] Read more.
Background: Pulmonary arterial hypertension (PAH) is a rare and severe condition characterized by increased pulmonary arterial pressure and vascular resistance. Women are more susceptible to PAH yet have higher survival rates than men, a phenomenon called the “estrogen paradox”. This study aims to investigate the sex-based differences in PAH using plasma untargeted metabolomics. Methods: Plasma samples were collected from 43 PAH patients and 37 healthy controls. The samples were analyzed using two complementary analytical techniques: gas chromatography–mass spectrometry (GC-QqQ/MS) and liquid chromatography–mass spectrometry (LC-Q-ToF/MS). The metabolic differences between male and female PAH patients and controls were identified using multivariate statistical analyses. Results: Our results show changes in the lipid, fatty acid, and amino acid metabolism in both sexes. Women presented additional changes in the carbohydrate, bile acid, and nucleotide metabolism. The metabolites affected by PAH in women included decreased threonine, tryptophan, and lipid intermediates and elevated bile acids. Men were found to have additional changes in the heme catabolism, cholesterol synthesis, and lipoxygenase pathways. The metabolites affected by PAH in men included decreased branched-chain amino acids and increased bilirubin, phospholipids, and oxidized fatty acids. Conclusions: The gender differences observed in the development of PAH are likely multifactorial. While estrogens and potentially other sex hormones have been implicated in modulating relevant biological pathways, their exact role in disease progression and pathogenesis remains to be fully elucidated. The specific metabolic changes in women and men point to distinct disease mechanisms, potentially explaining the differences in prevalence, prognosis, and treatment response of patients with PAH. The obtained results should be validated with the use of targeted quantitative analyses and larger numbers of patients. Full article
Show Figures

Figure 1

15 pages, 3401 KiB  
Article
High-Throughput Determination of Multiclass Chemical Hazards in Poultry Muscles and Eggs Using UPLC–MS/MS
by Rong Chen, Lan Chen, Mingyue Du, Qiaozhen Guo, Ciping Zhong, Jing Zhang and Xiaoqin Yu
Foods 2025, 14(10), 1660; https://doi.org/10.3390/foods14101660 - 8 May 2025
Viewed by 591
Abstract
A high-throughput method for the determination of a variety of chemical hazards in poultry muscle and egg samples was established via ultra-performance liquid chromatography–tandem triple quadrupole mass spectrometry (UPLC–QqQ-MS). The sample preparation procedure was developed based on this quick, easy, cheap, effective, rugged, [...] Read more.
A high-throughput method for the determination of a variety of chemical hazards in poultry muscle and egg samples was established via ultra-performance liquid chromatography–tandem triple quadrupole mass spectrometry (UPLC–QqQ-MS). The sample preparation procedure was developed based on this quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and validated for 280 chemical hazards potentially present in poultry products. The target compounds in poultry samples were extracted with a 1% formic acid–acetonitrile solution (15:85, v/v), and the metal ions in the matrix were chelated by adding ethylenediaminetetraacetic acid disodium salt (Na2EDTA). The supernatant was purified using Enhanced Matrix Removal (EMR) lipid sorbent. Chromatographic gradient separation was performed on an ACQUITY UPLC BEH C18 (2.1 mm × 100 mm, 1.7 μm) column with multiple reaction monitoring (MRM) under both negative- and positive-ion mode. Internal standard calibration or matrix-matched calibration was used for the quantitation. The results showed that good linearity was achieved for each target compound with correlation coefficients (R2) ≥ 0.99. The limits of detection (LODs) ranged from 0.05 to 10 µg/kg, and the acceptable limits of quantification (LOQs) were determined to be 0.1–20 µg/kg for all 280 compounds. Approximately 90% of the target compounds exhibited mean recoveries ranging from 60% to 120%, with relative standard deviations (RSDs) within 16.2%. This method can be used for the high-throughput rapid detection of prohibited drug residues in poultry eggs due to its easy operation and high accuracy. It was applied in real sample detection, and 43 chemicals including metronidazole were found in 211 poultry samples, with a concentration range of 0.11–638 μg/kg. Full article
Show Figures

Figure 1

18 pages, 250 KiB  
Article
The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds
by Silvia Marzocchi, Federica Pasini, Renzo Santi and Maria Fiorenza Caboni
Appl. Sci. 2025, 15(2), 634; https://doi.org/10.3390/app15020634 - 10 Jan 2025
Viewed by 816
Abstract
Pasta is a staple food with daily recommended consumption; thus, it can be an excellent vehicle for delivering bioactive compounds like phenols. However, the high-temperature drying process in pasta production, combined with cooking in boiling water, can significantly reduce the concentration of phenolic [...] Read more.
Pasta is a staple food with daily recommended consumption; thus, it can be an excellent vehicle for delivering bioactive compounds like phenols. However, the high-temperature drying process in pasta production, combined with cooking in boiling water, can significantly reduce the concentration of phenolic compounds. This study aimed to enhance the phenolic content of traditional semolina pasta by incorporating tomato and spinach powder into the recipe. High-performance liquid chromatography–electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-QqQ-MS) was employed to analyse the free and bound phenolic content in the raw materials, as well as in both dried uncooked and cooked pasta. The addition of tomato and spinach powders, known for their high content in bioactive compounds, increased the overall phenolic content of the final enriched pasta by three and two times, respectively, compared to the semolina and whole-wheat semolina pasta. These findings suggest that pasta enriched with tomato and spinach could serve as a functional food with a greater nutritional profile and health benefits through the enhanced delivery of phenolic compounds. Full article
15 pages, 2566 KiB  
Article
Impact of Year and Genotype on Benzoxazinoids and Their Microbial Metabolites in the Rhizosphere of Early-Vigour Wheat Genotypes in Southern Australia
by Paul A. Weston, Shahnaj Parvin, Pieter-W. Hendriks, Saliya Gurusinghe, Greg J. Rebetzke and Leslie A. Weston
Plants 2025, 14(1), 90; https://doi.org/10.3390/plants14010090 - 31 Dec 2024
Cited by 1 | Viewed by 702
Abstract
Wheat (Triticum aestivum) is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and [...] Read more.
Wheat (Triticum aestivum) is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops. Recently, the Commonwealth Scientific and Industrial Organisation (CSIRO), through an extensive recurrent selection programme investment, released numerous early-vigour wheat genotypes for commercial use, but the physiological basis for their improved vigour is under investigation. In the current study, we evaluated several early-vigour genotypes alongside common commercial and heritage wheat cultivars to assess the impact of improved early vigour on the production and release of targeted benzoxazinoids by field-grown wheat roots over a two-year period. Using UPLC coupled with triple quadrupole mass spectrometry (LC-MS QQQ), we quantified common wheat benzoxazinoids and their microbially produced metabolites (aminophenoxazinones) in soil collected from the rhizosphere and rhizoplane of wheat plants over two growing seasons in the Riverina region of New South Wales, Australia. The benzoxazolinone MBOA and several aminophenoxazinones were readily detected in soil samples, but actual soil concentrations differed greatly between years and among genotypes. In contrast to 2019, the concentration of aminophenoxazinones in wheat rhizosphere soil was significantly elevated in 2020, a year receiving adequate rainfall for optimal wheat growth. Aminophenoxazinones were detected in the rhizosphere of early-vigour genotypes and also parental lines exhibiting weed suppression, suggesting that improved early vigour and subsequent weed competitiveness may be related to increased root exudation and production of microbial metabolites in addition to changes in canopy architecture or other root-related early-vigour traits. As previously reported, MBOA was detected frequently in both the rhizoplane and rhizosphere of wheat. Depending on the year and genotype, we also observed enhanced biotransformation of these metabolites to several microbially transformed aminophenoxazinones in the rhizosphere of many of the evaluated genotypes. We are now investigating the role of early-vigour traits, including early canopy closure and biomass accumulation upon improved competitive ability of wheat, which will eventually result in more cost-effective weed management. Full article
Show Figures

Figure 1

21 pages, 5885 KiB  
Article
Chemical Profile and Antibacterial Activity of Vitis vinifera L. cv Graciano Pomace Extracts Obtained by Green Supercritical CO2 Extraction Method Against Multidrug-Resistant Escherichia coli Strains
by Rocío Fernández-Pérez, Silvia Ayuso, Cristina Moreta, María-José Saiz-Abajo, Miguel Gastón-Lorente, Fernanda Ruiz-Larrea and Carmen Tenorio
Foods 2025, 14(1), 17; https://doi.org/10.3390/foods14010017 - 25 Dec 2024
Cited by 2 | Viewed by 1128
Abstract
The objectives of this study were to obtain and characterise polyphenolic extracts from red grape pomace of Vitis vinifera L. cv Graciano via conventional solvent extraction (SE) and green supercritical fluid extraction (SFE) and to evaluate their in vitro antibacterial activity against susceptible [...] Read more.
The objectives of this study were to obtain and characterise polyphenolic extracts from red grape pomace of Vitis vinifera L. cv Graciano via conventional solvent extraction (SE) and green supercritical fluid extraction (SFE) and to evaluate their in vitro antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of intestinal origin. The SE and SFE methods were optimised, and ultra-performance liquid chromatography/mass spectrometry (UPLC/QqQ-MS/MS) analysis revealed 38 phenolic compounds in the SE sample, with anthocyanins being the predominant polyphenols, and 21 phenolic compounds in the SFE samples, among which hydroxybenzoic acids and flavonols were the predominant compounds. The SE and SFE samples showed antibacterial activity against both antibiotic-susceptible and -resistant E. coli strains, and minimal inhibitory concentration values were in the range of 1–4 mg/mL. The activity was bacteriostatic in all cases, and it was shown that a higher content of total polyphenols correlated with a higher antibacterial activity of the extracts. This study shows that red grape pomace of Vitis vinifera L. cv. Graciano is a rich source of bioactive phenolic compounds that can become an important feedstock for additives and other upgraded products of biotechnological interest, which can help to modulate intestinal microbiota and combat bacterial antibiotic resistance. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 1798 KiB  
Review
Current Role and Potential of Triple Quadrupole Mass Spectrometry in Biomedical Research and Clinical Applications
by Andreas Tsakalof, Alexey A. Sysoev, Kira V. Vyatkina, Alexander A. Eganov, Nikolay N. Eroshchenko, Alexey N. Kiryushin, Alexey Yu. Adamov, Elena Yu. Danilova and Alexander E. Nosyrev
Molecules 2024, 29(23), 5808; https://doi.org/10.3390/molecules29235808 - 9 Dec 2024
Cited by 1 | Viewed by 2997
Abstract
Mass-spectrometry-based assays nowadays play an essential role in biomedical research and clinical applications. There are different types of commercial mass spectrometers on the market today, and triple quadrupole (QqQ) is one of the time-honored systems. Here, we overview the main areas of QqQ [...] Read more.
Mass-spectrometry-based assays nowadays play an essential role in biomedical research and clinical applications. There are different types of commercial mass spectrometers on the market today, and triple quadrupole (QqQ) is one of the time-honored systems. Here, we overview the main areas of QqQ applications in biomedicine and assess the current level, evolution, and trends in the use of QqQ in these areas. Relevant data were extracted from the Scopus database using the specified terms and Boolean operators defined for each field of the QqQ application. We also discuss the recent advances in QqQ and QqQ-based analytical platforms, which promote the clinical application of these systems, and explain the indicated substantial increase in triple quadrupole use in biomedicine. The number of biomedical studies utilizing QqQ increased 2–3 times this decade. Triple quadrupole is most intensively used in the field of endocrine research and testing. On the contrary, the relative rate of immunoassay utilization—a major competitor of chromatography–mass spectrometry—decreased in this area as well as its use within Therapeutic drug monitoring (TDM) and forensic toxicology. Nowadays, the applications of high-resolution accurate mass (HRAM) mass spectrometers in the investigated areas represent only a small fraction of the total amount of research using mass spectrometry; however, their application substantially increased during the last decade in the untargeted search for new biomarkers. Full article
Show Figures

Figure 1

21 pages, 24654 KiB  
Article
Microscopic Identification, Phytochemical Analysis, and Study of Antioxidant Properties of Branches, Leaves, and Fruits of Kazakh Medicine Sambucus sibirica
by Pengyan Yan, Shuak Halimubek, Jingjing Chen, Wenhuan Ding, Sien Fan, Dongdong Wang, Xiaoqing Zhang, Haiyan Xu and Xuejia Zhang
Molecules 2024, 29(23), 5503; https://doi.org/10.3390/molecules29235503 - 21 Nov 2024
Viewed by 1519
Abstract
Sambucus sibirica, a deciduous shrub from the Adoxaceae family, is a traditional Kazakh medicine used in Xinjiang, China. Its branches, leaves, and fruits are used to treat fractures, rheumatoid arthritis, and nephritis. To advance research on S. sibirica, we conducted studies [...] Read more.
Sambucus sibirica, a deciduous shrub from the Adoxaceae family, is a traditional Kazakh medicine used in Xinjiang, China. Its branches, leaves, and fruits are used to treat fractures, rheumatoid arthritis, and nephritis. To advance research on S. sibirica, we conducted studies on its microscopic identification, chemical composition, and biological activity. The cross-sectional features of the branches, leaves, and fruits were observed under a microscope, revealing different types of ducts, cork cells, non-glandular hairs, oil droplets, stone cells, scale hairs, and star-shaped hairs in the S. sibirica powders. Fourier transform infrared spectroscopy (FTIR) was used to characterize the presence of specific chemical groups, revealing similarities and differences between different parts. Thin-layer chromatography (TLC) confirmed that chlorogenic acid was present in the branches, leaves, and fruits, whereas rutin was more prominent in the leaves. The total flavonoid contents were determined by a photocolorimetric approach and resulted in values of 7419.80, 5193.10, and 3629.10 μg·g−1 (dry weight) for the leaves, branches, and fruits, respectively. Further qualitative and quantitative analyses via ultra-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) identified rutin, chlorogenic acid, quercetin, isoquercetin, and astragalin, with contents ranging from 1.00 to 4535.60 μg·g−1 (dry weight). Antioxidant tests revealed that the branches, leaves, and fruits of S. sibirica presented antioxidant properties, with the leaves demonstrating the highest activity, followed by the branches and fruits. These results align with the results of the quantitative analysis. This study provides valuable insights into the microscopic features, chemical composition, and antioxidant activity of S. sibirica, laying the foundation for its pharmacognosy research and quality standards and offering a reference for its future development and utilization. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

13 pages, 2662 KiB  
Article
Optimization of Plant Oxalate Quantification and Generation of Low-Oxalate Maize (Zea mays L.) through O7 Overexpression
by Kai Zhao, Tao Wang, Bin-Bin Zhao and Jun Yang
Plants 2024, 13(21), 2950; https://doi.org/10.3390/plants13212950 - 22 Oct 2024
Viewed by 1538
Abstract
Oxalate, the simplest dicarboxylic acid, is a prevalent antinutrient that chelates with various metals and can lead to the formation of kidney stones in humans. The accurate detection of the oxalate concentration in food and the cultivation of low-oxalate crops are important for [...] Read more.
Oxalate, the simplest dicarboxylic acid, is a prevalent antinutrient that chelates with various metals and can lead to the formation of kidney stones in humans. The accurate detection of the oxalate concentration in food and the cultivation of low-oxalate crops are important for enhancing public health. In this study, we established a high-throughput and highly sensitive technique for oxalate detection using ultra-high-performance liquid chromatographic–triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS). Additionally, we overexpressed the gene O7, which encodes oxalyl-CoA synthetase in the maize oxalate degradation pathway, resulting in O7-OE lines. By employing the UPLC-QqQ-MS/MS method to measure oxalate levels in these transgenic lines, we observed that the oxalate content in the kernels of O7-OE lines was reduced by approximately 43%, with a concurrent increase in some micronutrients such as zinc. Importantly, the transgenic maize showed normal seed storage compound accumulation or other agronomic characteristics. In summary, we developed a high-throughput detection method that advances oxalate measurement. Furthermore, by generating new maize germplasm with diminished oxalate, our work offers potential health advantages to consumers. Full article
(This article belongs to the Special Issue Genetics, Genomics, and Biotechnology for Cereal Crop Improvements)
Show Figures

Figure 1

13 pages, 5120 KiB  
Article
The Metabolomic Profiling of the Flavonoid Compounds in Red Wine Grapes and the Impact of Training Systems in the Southern Subtropical Region of China
by Huan Yu, Hong-Yan Li, Si-Hong Zhou, Guo Cheng, Rong-Fu Wei, Yong-Mei Zhou, Ying Zhang, Tai-Li Xie and Lan Zhang
Int. J. Mol. Sci. 2024, 25(16), 8624; https://doi.org/10.3390/ijms25168624 - 7 Aug 2024
Cited by 2 | Viewed by 1325
Abstract
Flavonoids play an important role in forming wine grapes and wine quality characteristics. The flavonoids of three winter red wine grapes, Yeniang No. 2 (YN2), Marselan (Mar), and Guipu No. 6 (GP6), were analyzed by ultra-high-performance liquid chromatography–triple quadrupole mass spectrometry (UPLC-QQQ-MS). Furthermore, [...] Read more.
Flavonoids play an important role in forming wine grapes and wine quality characteristics. The flavonoids of three winter red wine grapes, Yeniang No. 2 (YN2), Marselan (Mar), and Guipu No. 6 (GP6), were analyzed by ultra-high-performance liquid chromatography–triple quadrupole mass spectrometry (UPLC-QQQ-MS). Furthermore, the flavonoids in GP6 grapevines using two types of training systems, namely, trellis (T) and espaliers (E), were also compared in this study. Overall, 196 flavonoid metabolites, including 96 flavones, 38 flavonols, 19 flavanones, 18 polyphenols, 15 anthocyanins, 7 isoflavones, and 3 proanthocyanidins, were identified. The flavonoid profiles were remarkably different among these three grape varieties, while they did not change much in the GP6 managed on trellis and espaliers. Grape varieties with different genetic backgrounds have their own unique flavonoid profiles. Compared with Mar-T, isoflavones and flavonols presented higher contents in GP6-T and YN2-T, which mainly contain glycitein, genistin, calycosin, kaempferide, isotrifoliin, and ayanin. The anthocyanin content was significantly higher in YN2-T than in the other two varieties. YN2 and GP6-T present a more stable color, with significantly more acetylated diglucosides and methylated anthocyanins in YN2-T and GP6-T than in Mar-T. Notably, GP6 had more varied flavonoids and the better characteristics to its flavonoid profile out of these three varieties, due to it containing a higher number of anthocyanins, flavone, and flavonols and the greatest number of different flavonoid metabolites (DFMs), with higher contents than YN2 and Mar. Compared with the trellis training system, the espaliers training system increased the content of flavonoids detected in GP6 grape berries; however, the composition of flavonoids strictly depends on the grape variety. Full article
Show Figures

Figure 1

21 pages, 2586 KiB  
Article
Enhancing Antioxidant Bioaccessibility in Rosa rugosa through Lactobacillus plantarum Fermentation
by Jiaru Li, Junxiang Li, Hui Yang, Yuchan Ma, Zeqi Huo, Shutao Wang, Yang Lin and Chunjiang Zhang
Fermentation 2024, 10(7), 368; https://doi.org/10.3390/fermentation10070368 - 19 Jul 2024
Cited by 1 | Viewed by 1850
Abstract
This study explores the biotransformation of phenolic compounds in Rosa rugosa through Lactobacillus plantarum fermentation, enhancing their bioaccessibility and antioxidant capacity. We developed a sensitive and reproducible analytical method using ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS), enabling [...] Read more.
This study explores the biotransformation of phenolic compounds in Rosa rugosa through Lactobacillus plantarum fermentation, enhancing their bioaccessibility and antioxidant capacity. We developed a sensitive and reproducible analytical method using ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS), enabling the analysis of 17 phenolic compounds from Rosa (R) and fermented Rosa (FR). Additionally, we conducted a density functional theory (DFT) study to correlate the structure of key phenolic compounds from R and FR with their antioxidant activity. Our findings revealed that both R and FR mitigate oxidative stress in tert-butyl-hydrogen peroxide (TBHP)-induced Caco-2 and HT-29 cells by elevating the activities of crucial antioxidative enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR). Furthermore, fermented Rosa significantly upregulated Nrf2, γ-GCS, HO-1, and NOQ-1 mRNA expression in TBHP-induced cells with Quantitative and real-time PCR technology, emphasizing its protective function primarily through the Nrf2 signaling pathway. This study is the first to demonstrate the link between the enhanced antioxidant potential in fermented Rosa and the biotransformation of its phenolic compounds. It paves the way for augmenting the antioxidant capacity of plant foods through Lactobacillus plantarum fermentation, offering a novel approach to reinforce their health benefits. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 5080 KiB  
Article
Olaris Global Panel (OGP): A Highly Accurate and Reproducible Triple Quadrupole Mass Spectrometry-Based Metabolomics Method for Clinical Biomarker Discovery
by Masoumeh Dorrani, Jifang Zhao, Nihel Bekhti, Alessia Trimigno, Sangil Min, Jongwon Ha, Ahram Han, Elizabeth O’Day and Jurre J. Kamphorst
Metabolites 2024, 14(5), 280; https://doi.org/10.3390/metabo14050280 - 11 May 2024
Viewed by 2612
Abstract
Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity [...] Read more.
Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set. Full article
Show Figures

Figure 1

23 pages, 3158 KiB  
Article
Implications of the Propagation Method for the Phytochemistry of Nepeta cataria L. throughout a Growing Season
by Erik Nunes Gomes, Bo Yuan, Harna K. Patel, Anthony Lockhart, Christian A. Wyenandt, Qingli Wu and James E. Simon
Molecules 2024, 29(9), 2001; https://doi.org/10.3390/molecules29092001 - 26 Apr 2024
Cited by 1 | Viewed by 1979
Abstract
Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this [...] Read more.
Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance. Full article
(This article belongs to the Special Issue Biological Activity of Plant Compounds and Extract, 3rd Edition)
Show Figures

Figure 1

16 pages, 1509 KiB  
Article
Using Targeted Metabolomics to Unravel Phenolic Metabolites of Plant Origin in Animal Milk
by Vicente Agulló, Claudia Favari, Niccolò Pilla, Letizia Bresciani, Francisco A. Tomás-Barberán, Alan Crozier, Daniele Del Rio and Pedro Mena
Int. J. Mol. Sci. 2024, 25(8), 4536; https://doi.org/10.3390/ijms25084536 - 20 Apr 2024
Viewed by 2334
Abstract
Milk holds a high nutritional value and is associated with diverse health benefits. The understanding of its composition of (poly)phenolic metabolites is limited, which necessitates a comprehensive evaluation of the subject. This study aimed at analyzing the (poly)phenolic profile of commercial milk samples [...] Read more.
Milk holds a high nutritional value and is associated with diverse health benefits. The understanding of its composition of (poly)phenolic metabolites is limited, which necessitates a comprehensive evaluation of the subject. This study aimed at analyzing the (poly)phenolic profile of commercial milk samples from cows and goats and investigating their sterilization treatments, fat content, and lactose content. Fingerprinting of phenolic metabolites was achieved by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Two hundred and three potential microbial and phase II metabolites of the main dietary (poly)phenols were targeted. Twenty-five metabolites were identified, revealing a diverse array of phenolic metabolites in milk, including isoflavones and their microbial catabolites equol and O-desmethylangolensin, phenyl-γ-valerolactones (flavan-3-ol microbial catabolites), enterolignans, urolithins (ellagitannin microbial catabolites), benzene diols, and hippuric acid derivates. Goat’s milk contained higher concentrations of these metabolites than cow’s milk, while the sterilization process and milk composition (fat and lactose content) had minimal impact on the metabolite profiles. Thus, the consumption of goat’s milk might serve as a potential means to supplement bioactive phenolic metabolites, especially in individuals with limited production capacity. However, further research is needed to elucidate the potential health effects of milk-derived phenolics. Full article
Show Figures

Figure 1

15 pages, 19717 KiB  
Article
Response Surface Modelling of Six Organic Acids from Pinellia ternata (Thunb.) Breit by Ultrasound-Assisted Extraction and Its Determination by High-Performance Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry
by Lu Wei, Jinxin Li, Jingyi Zhang, Kaili Qu, Mingxing Wang, Tingting Ni, Yuhuan Miao, Ming Luo, Shumin Feng and Dahui Liu
Chemosensors 2024, 12(3), 47; https://doi.org/10.3390/chemosensors12030047 - 19 Mar 2024
Cited by 2 | Viewed by 2092
Abstract
Organic acids are a key active component of Pinellia ternata (Thunb.) Breit, and their concentration is closely associated with the quality of P. ternata. Developing an efficient and rapid method for detecting organic acids can offer a valuable technology for real-time assessment [...] Read more.
Organic acids are a key active component of Pinellia ternata (Thunb.) Breit, and their concentration is closely associated with the quality of P. ternata. Developing an efficient and rapid method for detecting organic acids can offer a valuable technology for real-time assessment of P. ternata quality. In this work, a high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-QqQ-MS/MS) approach, combining the optimization of extraction conditions using response surface methodology (RSM), was developed for the simultaneous quantitative analysis of six organic acids in P. ternata. The optimal extraction conditions for organic acids in P. ternata were ultrasonic extraction with a solid–liquid ratio of 1:50, ultrasonic time of 60 min, and extraction temperature of 55 °C. Multiple-reaction monitoring (MRM) scanning was employed for quantification using HPLC-QqQ-MS/MS in negative ionization mode through a single run of 10 min, and the limit of detection (LLOD) and limit of quantification (LLOQ) for organic acids were as low as 0.138 ng/mL and 0.614 ng/mL, respectively. The relative standard deviations (RSDs) of reproducibility, precision, and stability were all lower than 5.0%, and recovery rates were 97.75–107.14%, with RSDs < 5.0%. Finally, this method was successfully applied to determine the investigated organic acids in 12 production regions of P. ternata, revealing significant differences between different production areas. This indicates that the optimized method is suitable for further accurate investigations of organic acids of P. ternata. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

Back to TopTop