Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = Positive Energy District

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13362 KiB  
Article
Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project
by Michele Grimaldi and Alessandra Marra
Sustainability 2025, 17(15), 6744; https://doi.org/10.3390/su17156744 - 24 Jul 2025
Viewed by 233
Abstract
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development [...] Read more.
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development is still limited in the Member States. To this end, this paper proposes a methodology to identify optimal spatial configurations of RECs, based on proximity criteria and maximization of energy self-sufficiency. This result is achieved through the mapping of the demand, expressive of the energy consumption of residential buildings; the suitable areas for installing photovoltaic panels on the roofs of existing buildings; the supply; the supply–demand balance, from which it is possible to identify Positive Energy Districts (PEDs) and Negative Energy Districts (NEDs). Through an iterative process, the optimal configuration is then sought, aggregating only PEDs and NEDs that meet the chosen criteria. This method is applied to the case study of the Avellino Province in the Campania Region (Italy). The maps obtained allow local authorities to inform citizens about the areas where it is convenient to aggregate with their neighbors in a REC to have benefits in terms of energy self-sufficiency, savings on bills or incentives at the local level, including those deriving from urban plans. The latter can encourage private initiative in order to speed up the RECs’ deployment. The presented model is being implemented in the framework of an ongoing research and development project, titled Renewable Energy Communities Monitoring, Optimization, and Planning (RECMOP). Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Viewed by 385
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 399
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

32 pages, 10028 KiB  
Article
Natural Gas Heating in Serbian and Czech Towns: The Role of Urban Topologies and Building Typologies
by Dejan Brkić, Zoran Stajić and Dragana Temeljkovski Novaković
Urban Sci. 2025, 9(7), 284; https://doi.org/10.3390/urbansci9070284 - 21 Jul 2025
Viewed by 448
Abstract
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative [...] Read more.
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative fuel powers a central heating plant, and the generated heat is distributed to buildings via a thermal network. The choice between these systems should first consider safety and environmental factors, followed by the urban characteristics of the settlement. In particular, building typology—such as size, function, and spatial configuration—and urban topology, referring to the relative positioning of buildings, play a crucial role. For example, very tall buildings often exclude the use of piped gas due to safety concerns, whereas in other cases, economic efficiency becomes the determining factor. To support decision-making, a comparative cost analysis is conducted, assessing the required infrastructure for both systems, including pipelines, boilers, and associated components. The study identifies representative residential building types in selected urban areas of Serbia and Czechia that are suitable for either heating approach. Additionally, the article examines the broader energy context in both countries, with emphasis on recent developments in the natural gas sector and their implications for urban heating strategies. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

18 pages, 296 KiB  
Article
Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea
by Chang-Soo Noh, Min-Ki Hyun and Seung-Hoon Yoo
Energies 2025, 18(14), 3809; https://doi.org/10.3390/en18143809 - 17 Jul 2025
Viewed by 376
Abstract
This study empirically delves into whether residential heating methods significantly affect apartment prices in Uiwang City, a suburban city near the Seoul Metropolitan area, South Korea. Using data from 1256 apartment sales, where both district heating systems (DHSs) and individual heating systems (IHSs) [...] Read more.
This study empirically delves into whether residential heating methods significantly affect apartment prices in Uiwang City, a suburban city near the Seoul Metropolitan area, South Korea. Using data from 1256 apartment sales, where both district heating systems (DHSs) and individual heating systems (IHSs) coexist, a hedonic price equation was estimated to analyze the impact of the heating method choices on housing values. Various housing attributes, including physical, locational, and environmental factors, were controlled, and multiple regression models were compared to identify the best-performing specification. The results show that apartments equipped with a DHS are priced, on average, KRW 92 million (USD 72 thousand) higher than those with an IHS. The price difference corresponds to KRW 849 thousand (USD 665) per m2 and possesses the statistical significance at the 5% level. Moreover, it is quite meaningful, representing roughly 11.2% of the price of an average apartment. These findings suggest that the use of DHS has a positive effect on apartment prices that reflect consumers’ preferences, beyond its advantages in stable heat supply and energy cost savings. This article provides empirical evidence that DHS can serve as an important urban infrastructure contributing to asset value enhancement. Although this study is based on a specific geographic area and caution must be exercised in generalizing its findings, it reports the interesting finding that residential heating method significantly affects housing prices. Full article
34 pages, 977 KiB  
Review
Autonomous Cyber-Physical Systems Enabling Smart Positive Energy Districts
by Dimitrios Siakas, Georgios Lampropoulos and Kerstin Siakas
Appl. Sci. 2025, 15(13), 7502; https://doi.org/10.3390/app15137502 - 3 Jul 2025
Viewed by 521
Abstract
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to [...] Read more.
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to the United Nations’ (UN) sustainable development goals (SDGs) of “Sustainable Cities and Communities”, “Affordable and Clean Energy”, and “Climate Action”. PEDs are urban neighborhoods that generate renewable energy to a higher extent than they consume, mainly through the utilization of innovative technologies and renewable energy sources. In accordance with the EU 2050 aim, the PED concept is attracting growing research interest. PEDs can transform existing energy systems and aid in achieving carbon neutrality and sustainable urban development. PED is a novel concept and its implementation is challenging. This study aims to present the emerging technologies enabling the proliferation of PEDs by identifying the main challenges and potential solutions to effective adoption and implementation of PEDs. This paper examines the importance and utilization of cyber-physical systems (CPSs), digital twins (DTs), artificial intelligence (AI), the Internet of Things (IoT), edge computing, and blockchain technologies, which are all fundamental to the creation of PEDs for enhancing energy efficiency, sustainable energy, and user engagement. These systems combine physical infrastructure with digital technologies to create intelligent and autonomous systems to optimize energy production, distribution, and consumption, thus positively contributing to achieving smart and sustainable development. Full article
Show Figures

Figure 1

20 pages, 539 KiB  
Review
Positive Energy Districts Enabling Smart Energy Communities
by Dimitrios Siakas, Harjinder Rahanu, Elli Georgiadou, Kerstin Siakas and Georgios Lampropoulos
Energies 2025, 18(12), 3131; https://doi.org/10.3390/en18123131 - 14 Jun 2025
Cited by 1 | Viewed by 511
Abstract
Energy transitions concentrated on a neighborhood or district scale represent a fairly new area of focus at the European (EU) level, aiming to combat future global warming and to reduce anthropogenic greenhouse gas (GHG) emissions. In the EU energy transition policy agenda, positive [...] Read more.
Energy transitions concentrated on a neighborhood or district scale represent a fairly new area of focus at the European (EU) level, aiming to combat future global warming and to reduce anthropogenic greenhouse gas (GHG) emissions. In the EU energy transition policy agenda, positive energy districts (PEDs) refer to urban areas where more renewable/zero-emissions energy is produced annually than is consumed. PEDs have increasingly grown in recognition and significance, as a societal solution geared towards a low-carbon future. The relevant aims include the utilization of 100 PEDs by 2025 and alignment with the EU, which seeks to become a climate-neutral continent by 2050. However, this target raises questions regarding the means of achieving fast and consistent adoption across various socio-technical contexts. Defining the opportunities, challenges, and key issues to address short-term project timelines is vital to implementing fit-for-purpose solutions and bringing PEDs into the mainstream. Proactive knowledge sharing, adaptive learning, and collaboration across disciplines and sectors will bring know-how for understanding the requirements in different contexts. The need for practical approaches to facilitate PED implementation is crucial. This study aims to elucidate the opportunities for and barriers to successful PED design and implementation by compiling and synthesizing experiences from 61 PED projects, identifying key drivers, challenges, enablers, and ethical considerations. In addition, the authors present a framework, consisting of moral principles, which can help present the issues concerning the development and deployment of PED in an ethical context. Full article
Show Figures

Figure 1

27 pages, 2919 KiB  
Article
Conversion to Variable Flow Rate—Advanced Control of a District Heating (DH) System with a Focus on Operational Data
by Stanislav Chicherin
Energies 2025, 18(11), 2772; https://doi.org/10.3390/en18112772 - 26 May 2025
Viewed by 532
Abstract
This study aims to improve the operational efficiency of district heating (DH) systems by introducing a novel control method based on variable flow rate control, without compromising indoor comfort. The novelty of this work lies in its integrated analysis of flow control and [...] Read more.
This study aims to improve the operational efficiency of district heating (DH) systems by introducing a novel control method based on variable flow rate control, without compromising indoor comfort. The novelty of this work lies in its integrated analysis of flow control and substation configurations in DH networks, linking real-world operational strategies with mathematical modeling to improve energy efficiency and infrastructure costs. Using a case study from Omsk, Russia, where supply temperatures and energy demand profiles are traditionally rigid, the proposed approach utilizes operational data, including outdoor temperature, supply/return temperature, and hourly consumption patterns, to optimize heat delivery. A combination of flow rate adjustments, bypass line implementation, and selective control strategies for transitional seasons (fall and spring) was modeled and analyzed. The methodology integrates heat meter data, indoor temperature tracking, and Supervisory Control and Data Acquisition (SCADA)-like system inputs to dynamically adapt supply temperatures while avoiding overheating and reducing distribution losses. The results show a significant reduction in excess heat supply during warm days, with improvements in heat demand prediction accuracy (17.3% average error) compared to standard models. Notably, the optimized configuration led to a 21% reduction in total greenhouse gas (GHG) emissions (including 6537 tons of CO2 annually), a 55.3% decrease in annualized operational costs, and a positive net present value (NPV) by year nine, with an internal rate of return (IRR) of 25.4%. Compared to conventional scenarios, the proposed solution offers better economic performance without requiring extensive infrastructure upgrades. These findings demonstrate that flexible, data-driven DH control is a feasible and sustainable alternative for aging networks in cold-climate regions. Full article
(This article belongs to the Special Issue Trends and Developments in District Heating and Cooling Technologies)
Show Figures

Figure 1

1 pages, 135 KiB  
Correction
Correction: Marotta et al. Towards Positive Energy Districts: Energy Renovation of a Mediterranean District and Activation of Energy Flexibility. Solar 2023, 3, 253–282
by Ilaria Marotta, Thibault Péan, Francesco Guarino, Sonia Longo, Maurizio Cellura and Jaume Salom
Solar 2025, 5(2), 20; https://doi.org/10.3390/solar5020020 - 15 May 2025
Cited by 1 | Viewed by 1020
Abstract
Following publication, the Editorial Office became aware that the original article [...] Full article
25 pages, 25281 KiB  
Article
Blending Nature with Technology: Integrating NBSs with RESs to Foster Carbon-Neutral Cities
by Anastasia Panori, Nicos Komninos, Dionysis Latinopoulos, Ilektra Papadaki, Elisavet Gkitsa and Paraskevi Tarani
Designs 2025, 9(3), 60; https://doi.org/10.3390/designs9030060 - 9 May 2025
Viewed by 2388
Abstract
Nature-based solutions (NBSs) offer a promising framework for addressing urban environmental challenges while also enhancing social and economic resilience. As cities seek to achieve carbon neutrality, the integration of NBSs with renewable energy sources (RESs) presents both an opportunity and a challenge, requiring [...] Read more.
Nature-based solutions (NBSs) offer a promising framework for addressing urban environmental challenges while also enhancing social and economic resilience. As cities seek to achieve carbon neutrality, the integration of NBSs with renewable energy sources (RESs) presents both an opportunity and a challenge, requiring an interdisciplinary approach and an innovative planning strategy. This study aims to explore potential ways of achieving synergies between NBSs and RESs to contribute to urban resilience and climate neutrality. Focusing on the railway station district in western Thessaloniki (Greece), this research is situated within the ReGenWest project, part of the EU Cities Mission. This study develops a comprehensive, well-structured framework for integrating NBSs and RESs, drawing on principles of urban planning and energy systems to address the area’s specific spatial and ecological characteristics. Using the diverse typologies of open spaces in the district as a foundation, this research analyzes the potential for combining NBSs with RESs, such as green roofs with photovoltaic panels, solar-powered lighting, and solar parking shaders, while assessing the resulting impacts on ecosystem services. The findings reveal consistent benefits for cultural and regulatory services across all interventions, with provisioning and supporting services varying according to the specific solution applied. In addition, this study identifies larger-scale opportunities for integration, including the incorporation of NBSs and RESs into green and blue corridors and metropolitan mobility infrastructures and the development of virtual power plants to enable smart, decentralized energy management. A critical component of the proposed strategy is the implementation of an environmental monitoring system that combines hardware installation, real-time data collection and visualization, and citizen participation. Aligning NBS–RES integration with Positive Energy Districts is another aspect that is stressed in this paper, as achieving carbon neutrality demands broader systemic transformations. This approach supports iterative, adaptive planning processes that enhance the efficiency and responsiveness of NBS–RES integration in urban regeneration efforts. Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

17 pages, 3087 KiB  
Article
Coordinated Scheduling and Operational Characterization of Electricity and District Heating Systems: A Case Study
by Peng Yu, Dianyang Li, Dai Cui, Jing Xu, Chengcheng Li and Huiqing Cao
Energies 2025, 18(9), 2211; https://doi.org/10.3390/en18092211 - 26 Apr 2025
Viewed by 429
Abstract
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing [...] Read more.
With the increasing penetration of renewable energy generation in energy systems, power and district heating systems (PHSs) continue to encounter challenges with wind and solar curtailment during scheduling. Further integration of renewable energy generation can be achieved by exploring the flexibility of existing systems. Therefore, this study systematically explores the deep transfer modifications of a specific thermal power plant based in Liaoning, China, and the operational characteristics of the heating supply system of a particular heating company. In addition, the overall PHS operational performance is analyzed. The results indicate that both absorption heat pumps and solid-state electric thermal storage technologies effectively improve system load regulation capabilities. The temperature decrease in the water medium in the primary network was proportional to the pipeline distance. When the pipeline lengths were 1175 and 14,665 m, the temperature decreased by 0.66 and 3.48 °C, respectively. The heat exchanger effectiveness and logarithmic mean temperature difference (LMTD) were positively correlated with the outdoor temperature. When the outdoor temperature dropped to −18 °C, the heat exchanger efficiency decreased to 60%, and the LMTD decreased to 17.5 °C. The study findings provide practical data analysis support to address the balance between power supply and heating demand. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

26 pages, 16562 KiB  
Article
Spatiotemporal Characteristics and Influencing Factors of Renewable Energy Production Development in Ningxia Hui Autonomous Region, China (2014–2021)
by Xiao Ma, Yongchun Yang and Huazhang Zhu
Land 2025, 14(4), 908; https://doi.org/10.3390/land14040908 - 21 Apr 2025
Viewed by 539
Abstract
Promoting the development of low-carbon renewable energy is crucial for meeting the growing energy demand, reducing dependence on fossil fuels, and controlling carbon dioxide emissions. Clarifying the spatiotemporal characteristics of regional renewable energy production and its influencing factors will help optimize the spatial [...] Read more.
Promoting the development of low-carbon renewable energy is crucial for meeting the growing energy demand, reducing dependence on fossil fuels, and controlling carbon dioxide emissions. Clarifying the spatiotemporal characteristics of regional renewable energy production and its influencing factors will help optimize the spatial layout of renewable energy production and provide a solid theoretical basis for coordinating the development of all aspects of renewable energy production. Using panel data from 22 districts and counties in Ningxia from 2014 to 2021, this study employed the spatial Gini coefficient, Moran’s I index, standard deviational ellipse, and geographical detector to analyze the spatiotemporal evolution patterns and influencing factors of renewable energy production development in Ningxia. The results indicate that renewable energy production in Ningxia exhibits significant spatial agglomeration and autocorrelation. Temporally, renewable energy production shows a spatial expansion trend characterized by dynamic agglomeration patterns. The coupling degree between renewable energy generation and the spatial distribution of power production is relatively high, with notable regional disparities. Urbanization level, urban population, per capita GDP, and industrial SO2 emissions have a positive impact on renewable energy production, while energy intensity and environmental regulation show insignificant effects. To further promote the development of renewable energy, Ningxia should strengthen power infrastructure construction at the county level, enhance the radiating and driving effects of high-value areas on surrounding cities and counties, optimize the spatial layout of power facilities based on the agglomeration trajectories of renewable energy production, integrate multiple types of renewable energy to improve overall generation efficiency and system stability, and encourage local enterprises to increase technological and economic investments in renewable energy, thereby advancing sustainable energy transition and achieving high-quality development in resource-based regions. Full article
Show Figures

Figure 1

24 pages, 1121 KiB  
Review
Review of Dynamic Building Envelope Systems and Technologies Utilizing Renewable Energy Resources
by Mohammad Almesbah and Julian Wang
Designs 2025, 9(2), 41; https://doi.org/10.3390/designs9020041 - 31 Mar 2025
Viewed by 1301
Abstract
Dynamic building envelopes integrated with renewable energy sources, termed Dynamic and Renewable Source Building Envelopes (DREBE), provide an innovative approach to optimizing building envelope designs. Yet, these systems are not mature enough and not widely adopted in the industry and few literature resources [...] Read more.
Dynamic building envelopes integrated with renewable energy sources, termed Dynamic and Renewable Source Building Envelopes (DREBE), provide an innovative approach to optimizing building envelope designs. Yet, these systems are not mature enough and not widely adopted in the industry and few literature resources are employed to understand them. These systems dynamically respond and adapt to various environmental, energy, and occupancy demands for higher energy efficiency and comfort levels compared to traditional building envelopes while simultaneously producing energy. Their potential in climate change mitigation and fostering sustainable urban development warrants great attention from industry and urban planners. Especially in positive energy districts, which aim to reach net-positive energy goals through utilizing smart energy efficient building systems on the district level. This paper reviews innovative systems like dynamic photovoltaic shading devices and phase change materials and evaluates their performance by answering two research questions, what are the current DBE trends and are they feasible in achieving net-positive energy consumption? The analysis conducted reveals the dominance of solar-based dynamic renewable energy systems and a great need for alternatives. The study suggests that alternatives like wind as a renewable energy source should be studied with dynamic systems. Moreover, the study highlights current research gaps including insufficient data on long-term application and economic costs associated with such systems. To address this gap, the study suggests exploring in depth some of these systems and then branching into various combinations of dynamic envelope systems with multiple renewable or adaptive components to further enhance the overall building performance. By synthesizing the current body of literature, this paper gives insights into advancing the application of the dynamic building envelope systems and highlights their crucial role in the future of sustainable urban environments. Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

3 pages, 130 KiB  
Editorial
Advanced Energy Systems in Energy-Resilient and Zero/Positive Energy Buildings, Communities, and Districts
by Hassam ur Rehman and Ala Hasan
Energies 2025, 18(5), 1218; https://doi.org/10.3390/en18051218 - 2 Mar 2025
Cited by 1 | Viewed by 852
Abstract
The pursuit of sustainable energy solutions has become a critical focus in addressing the challenges of climate change and urbanization [...] Full article
29 pages, 1166 KiB  
Article
Pathways to Positive Energy Districts: A Comprehensive Techno-Economic and Environmental Analysis Using Multi-Objective Optimization
by Guangxuan Wang, Olivier Gilmont and Julien Blondeau
Energies 2025, 18(5), 1134; https://doi.org/10.3390/en18051134 - 25 Feb 2025
Cited by 2 | Viewed by 821
Abstract
Transitioning to Positive Energy Districts (PEDs) is essential for achieving carbon neutrality in urban areas by 2050. This study presents a multi-objective optimization framework that balances energy, environmental, and economic performance, addressing the diverse priorities of multiple stakeholders. The framework enhances PED design [...] Read more.
Transitioning to Positive Energy Districts (PEDs) is essential for achieving carbon neutrality in urban areas by 2050. This study presents a multi-objective optimization framework that balances energy, environmental, and economic performance, addressing the diverse priorities of multiple stakeholders. The framework enhances PED design by systematically evaluating technical solutions, including renewable-based electrification, demand-side management (DSM), energy storage, and retrofitting. The framework is applied to the Usquare district in Brussels, Belgium, as a case study. The results indicate that expanding photovoltaic (PV) capacity is crucial for achieving PED targets, with renewable-based electrification potentially reducing carbon emissions by up to 79%. The incorporation of demand-side management (DSM) and battery storage improves system flexibility, reduces grid dependency, and enhances cost-effectiveness. Although slightly more costly, retrofitting existing buildings provides the most balanced approach, offering the lowest CO2 emissions and the highest self-consumption ratio. This study presents a comprehensive decision-making support framework for optimizing PED design and operation, offering practical guidance for urban energy planning and contributing to global efforts toward carbon neutrality. Full article
Show Figures

Figure 1

Back to TopTop