Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Pitzer theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4489 KB  
Article
A Thermodynamic Model for the Solubility of SO2 in Multi-Ion Electrolyte Solutions and Its Applications
by Baoyi Feng, Zequn Zhang, Mei Xu and Shide Mao
Appl. Sci. 2025, 15(7), 3927; https://doi.org/10.3390/app15073927 - 3 Apr 2025
Viewed by 1326
Abstract
A solubility model of SO2 in multi-ion electrolyte solutions has been developed by the activity-fugacity relation at vapor-liquid equilibria. The fugacity coefficient of SO2 in the vapor phase is calculated by the equation of state (EOS) of pure SO2, [...] Read more.
A solubility model of SO2 in multi-ion electrolyte solutions has been developed by the activity-fugacity relation at vapor-liquid equilibria. The fugacity coefficient of SO2 in the vapor phase is calculated by the equation of state (EOS) of pure SO2, and the activity coefficient of SO2 in the liquid phase is calculated by the Pitzer activity coefficient theory. The model can reproduce the reliable solubility data of SO2 in pure water and multi-ion electrolyte solutions (Na+, K+, Cl, SO42) within or close to experimental uncertainties. Although the second-order and third-order interaction parameters between SO2 and Mg2+ and Ca2+ have been adopted by an approximation, the solubility model can also be extended to predict the SO2 solubility in seawater. In addition, combining with the EOS of a CO2-SO2 fluid mixture, the model can be used to predict the solubility of a CO2-SO2 mixture in aqueous electrolyte solutions. The calculated results are consistent with experimental data, which indicates that the solubility model has certain predictive ability. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

20 pages, 1766 KB  
Article
An Accurate Model to Calculate CO2 Solubility in Pure Water and in Seawater at Hydrate–Liquid Water Two-Phase Equilibrium
by Mengyao Di, Rui Sun, Lantao Geng and Wanjun Lu
Minerals 2021, 11(4), 393; https://doi.org/10.3390/min11040393 - 9 Apr 2021
Cited by 7 | Viewed by 5518
Abstract
Understanding of CO2 hydrate–liquid water two-phase equilibrium is very important for CO2 storage in deep sea and in submarine sediments. This study proposed an accurate thermodynamic model to calculate CO2 solubility in pure water and in seawater at hydrate–liquid water [...] Read more.
Understanding of CO2 hydrate–liquid water two-phase equilibrium is very important for CO2 storage in deep sea and in submarine sediments. This study proposed an accurate thermodynamic model to calculate CO2 solubility in pure water and in seawater at hydrate–liquid water equilibrium (HLWE). The van der Waals–Platteeuw model coupling with angle-dependent ab initio intermolecular potentials was used to calculate the chemical potential of hydrate phase. Two methods were used to describe the aqueous phase. One is using the Pitzer model to calculate the activity of water and using the Poynting correction to calculate the fugacity of CO2 dissolved in water. Another is using the Lennard–Jones-referenced Statistical Associating Fluid Theory (SAFT-LJ) equation of state (EOS) to calculate the activity of water and the fugacity of dissolved CO2. There are no parameters evaluated from experimental data of HLWE in this model. Comparison with experimental data indicates that this model can calculate CO2 solubility in pure water and in seawater at HLWE with high accuracy. This model predicts that CO2 solubility at HLWE increases with the increasing temperature, which agrees well with available experimental data. In regards to the pressure and salinity dependences of CO2 solubility at HLWE, there are some discrepancies among experimental data. This model predicts that CO2 solubility at HLWE decreases with the increasing pressure and salinity, which is consistent with most of experimental data sets. Compared to previous models, this model covers a wider range of pressure (up to 1000 bar) and is generally more accurate in CO2 solubility in aqueous solutions and in composition of hydrate phase. A computer program for the calculation of CO2 solubility in pure water and in seawater at hydrate–liquid water equilibrium can be obtained from the corresponding author via email. Full article
Show Figures

Figure 1

14 pages, 3207 KB  
Article
A Laboratory Workflow for Characterization of Scaling Deposits in Thermal Wells
by Ali Habibi, Charles E. Fensky, Morteza Roostaei, Mahdi Mahmoudi, Vahidoddin Fattahpour, Hongbo Zeng and Mohtada Sadrzadeh
Energies 2020, 13(12), 3184; https://doi.org/10.3390/en13123184 - 19 Jun 2020
Cited by 1 | Viewed by 2943
Abstract
Previous studies have shown that different parameters such as reservoir conditions (e.g., pressure, temperature, and brine chemistry) and wellbore hydraulics influence the scaling tendency of minerals on the surfaces of completion tools in conventional resources. Although different studies have investigated the suitable conditions [...] Read more.
Previous studies have shown that different parameters such as reservoir conditions (e.g., pressure, temperature, and brine chemistry) and wellbore hydraulics influence the scaling tendency of minerals on the surfaces of completion tools in conventional resources. Although different studies have investigated the suitable conditions for the precipitation of scaling minerals, there is still a lack of understanding about the composition of the scaling materials deposited on the surfaces of completion tools in thermal wells. In this study, we presented a laboratory workflow combined with a predictive toolbox to evaluate the scaling tendency of minerals for different downhole conditions in thermal wells. First, the scaling indexes (SIs) of minerals are calculated for five water samples produced from thermal wells located in the Athabasca and Cold Lake areas in Canada using the Pitzer theory. Then, different characterization methods, including scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and colorimetric and dry combustion analyses, have been applied to characterize the mineral composition of scale deposits collected from the surfaces of the completion tools. The results of the SI calculations showed that the scaling tendency of calcite/aragonite and Fe-based corrosion products is positive, suggesting that these minerals can likely deposit on the surfaces of completion tools. The characterization results confirmed the results of the Scaling Index calculations. The SEM/EDS and ICP-MS characterizations showed that carbonates, Mg-based silicates and Fe-based corrosion products are the main scaling components. The results of dry combustion analysis showed that the concentration of organic matter in the scale deposits is not negligible. The workflow presented in this study provides valuable insight to the industry to evaluate the possibility of scaling issues under different downhole conditions. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Graphical abstract

26 pages, 3233 KB  
Article
Understanding the Solution Behavior of Epinephrine in the Presence of Toxic Cations: A Thermodynamic Investigation in Different Experimental Conditions
by Francesco Crea, Concetta De Stefano, Anna Irto, Gabriele Lando, Stefano Materazzi, Demetrio Milea, Alberto Pettignano and Silvio Sammartano
Molecules 2020, 25(3), 511; https://doi.org/10.3390/molecules25030511 - 24 Jan 2020
Cited by 17 | Viewed by 6049
Abstract
The interactions of epinephrine ((R)-(−)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths [...] Read more.
The interactions of epinephrine ((R)-(−)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths and at T = 298.15 K (T = 310.15 K for (CH3)2Sn2+). The enthalpy changes for the protonation of epinephrine and its complex formation with UO22+ were also determined using isoperibolic titration calorimetry: ΔHHL = −39 ± 1 kJ mol−1, ΔHH2L = −67 ± 1 kJ mol−1 (overall reaction), ΔHML = −26 ± 4 kJ mol−1, and ΔHM2L2(OH)2 = 39 ± 2 kJ mol−1. The results were that UO22+ complexation by Eph was an entropy-driven process. The dependence on the ionic strength of protonation and the complex formation constants was modeled using the extended Debye–Hückel, specific ion interaction theory (SIT), and Pitzer approaches. The sequestering ability of adrenaline toward the investigated cations was evaluated using the calculation of pL0.5 parameters. The sequestering ability trend resulted in the following: UO22+ >> (CH3)2Sn2+ > CH3Hg+. For example, at I = 0.15 mol dm−3 and pH = 7.4 (pH = 9.5 for CH3Hg+), pL0.5 = 7.68, 5.64, and 2.40 for UO22+, (CH3)2Sn2+, and CH3Hg+, respectively. Here, the pH is with respect to ionic strength in terms of sequestration. Full article
Show Figures

Graphical abstract

12 pages, 3205 KB  
Article
Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake
by Weijun Song, Hongze Gang, Yuanqing Ma, Shizhong Yang and Bozhong Mu
Minerals 2017, 7(4), 57; https://doi.org/10.3390/min7040057 - 11 Apr 2017
Cited by 14 | Viewed by 7711
Abstract
Lithium-brine is an important potential source of lithium. Much research and investigation has been carried out aimed at lithium recovery from brine. Although the distribution and occurrence status of lithium in brine have important implications for lithium recovery, few reports had correlated to [...] Read more.
Lithium-brine is an important potential source of lithium. Much research and investigation has been carried out aimed at lithium recovery from brine. Although the distribution and occurrence status of lithium in brine have important implications for lithium recovery, few reports had correlated to this issue. In this article, a study was carried out to explore the lithium migration behavior during brine evaporation and KCl production process at Qarhan Salt Lake. The occurrence status of lithium both in fresh mined brine and residual brine after evaporation were also speculated by means of lithium concentration evaluation and theoretical calculation based on the Pitzer electrolyte solution theory. Results showed that, for Qarhan brine mined from the Bieletan region, most lithium was enriched in the residual brine during the brine evaporation process. The concentration of lithium in the residual brine could be more than 400 mg/L. More than 99.93% lithium ions in residual brine exist in free ions state and lithium does not precipitate from brine with a density of 1.3649 g/mL. The results also revealed that lithium concentration in wastewater discharged from KCl plants can reach a level of 243.8 mg/L. The investigation results provide a theoretical basis for comprehensive development and utilization of lithium resources in Qarhan Salt Lake. Full article
Show Figures

Figure 1

Back to TopTop