Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Pingguoli pear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3274 KB  
Article
Antifungal Activity of Artemisia capillaris Essential Oil Against Alternaria Species Causing Black Spot on Yanbian Pingguoli Pear in China
by Zu-Xin Kou, Yue Dang, Li Liu, Xue-Hong Wu and Yu Fu
Plants 2025, 14(20), 3146; https://doi.org/10.3390/plants14203146 - 13 Oct 2025
Viewed by 437
Abstract
Black spot is currently one of the most widespread diseases affecting Yanbian Pingguoli pears (Pyrus pyrifolia cv. ‘Pingguoli’), resulting in significant economic losses for fruit farmers. It is mainly caused by infestation by the fungal group of Alternaria species. To date, no [...] Read more.
Black spot is currently one of the most widespread diseases affecting Yanbian Pingguoli pears (Pyrus pyrifolia cv. ‘Pingguoli’), resulting in significant economic losses for fruit farmers. It is mainly caused by infestation by the fungal group of Alternaria species. To date, no research has reported the presence of Alternaria species and the pathogen of black spot disease on Yanbian Pingguoli pears in China. This study isolated, identified, and performed molecular profiling of 124 Alternaria strains collected from 15 major growing areas of Yanbian Pingguoli pear (more than 5000 trees). Moreover, the study evaluated the ability of Artemisia capillaris essential oil (AcEO) to suppress the mycelial expansion of Alternaria pathogens and conducted comprehensive chemical profiling. Overall, 124 pathogenic fungi were identified as Alternaria tenuissima (67 isolates, 54.0%) and A. alternate (57 isolates, 46.0%). AcEO showed a strong inhibitory effect on the two Alternaria species, with a minimal inhibitory concentration (MIC) value equivalent to 5.0 μL/mL. Eucalyptol, 2,2-Dimethyl-3-methylenebicyclo [2.2.1] heptane, (-)-alcanfor, and β-copaene were identified as the predominant bioactive components of AcEO. AcEO demonstrated concentration-dependent inhibition of the mycelial growth of A. tenuissima and A. alternata. These findings position AcEO as a promising candidate for developing sustainable fungicides to combat Alternaria-induced crop losses. Full article
(This article belongs to the Special Issue Natural Compounds for Controlling Plant Pathogens)
Show Figures

Figure 1

14 pages, 2088 KB  
Article
Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds
by Jing Dai, Yu Hu, Qi Si, Yifei Gu, Zhuqian Xiao, Qin Ge and Ruyi Sha
Molecules 2022, 27(18), 6077; https://doi.org/10.3390/molecules27186077 - 17 Sep 2022
Cited by 11 | Viewed by 2914
Abstract
Pear fruits have been reported to contain abundant bioactive compounds and exhibit antidiabetic activity. In this study, Pingguoli pear (Pyrus pyrifolia cv.‘Pingguoli’) fermentation broth was sequentially extracted by five solvents with increasing polarity (petroleum ether, chloroform, ethyl acetate, n-butanol, and water) to [...] Read more.
Pear fruits have been reported to contain abundant bioactive compounds and exhibit antidiabetic activity. In this study, Pingguoli pear (Pyrus pyrifolia cv.‘Pingguoli’) fermentation broth was sequentially extracted by five solvents with increasing polarity (petroleum ether, chloroform, ethyl acetate, n-butanol, and water) to evaluate its antioxidant and hypothermic activities, and then the main compounds of the fraction with the highest activity were assessed, which might be responsible for such activities. The results showed that the ethyl acetate fraction (EAF) exhibited the highest antioxidant activity according to DPPH (IC50 = 0.238 mg/mL), ABTS (IC50 = 0.293 mg/mL), and FRAP (IC50 = 0.193 mg/mL) assays. The in vitro hypoglycemic activity assay showed that EAF exhibited the strongest inhibitory effect, with IC50 values of 0.34 and 0.95 mg/mL for α-amylase and α-glucosidase, respectively. The glucose consumption in HepG2 cells treated with EAF was significantly increased to 252%, compare with control group. Liquid chromatography–mass spectrometry analysis implied that the main compounds, 3′-C-glucosylisoliquiritigenin, robustside D, caffeic acid, and chlorogenic acid may be potential candidates for the antioxidant and hypoglycemic activities of the EAF. This study suggested that EAF of Pingguoli pear fermentation broth could be utilized for development of potential functional food and antidiabetic agents. Full article
(This article belongs to the Special Issue Determination, Health Benefits and Metabolism of Food Bioactives)
Show Figures

Figure 1

Back to TopTop