Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Phormidium autumnale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 208 KiB  
Abstract
Are Cyanobacteria an Overlooked Risk for Ecosystems and Visitors in Spanish National Parks?
by Albano Diez-Chiappe, Samuel Cirés, Felipe Bolgenhagen, María de los Ángeles Muñoz-Martín, Ana Justel, Antonio Quesada and Elvira Perona
Biol. Life Sci. Forum 2022, 14(1), 25; https://doi.org/10.3390/blsf2022014025 - 21 Jul 2022
Viewed by 1101
Abstract
Potentially toxic cyanobacterial communities are prolific in freshwater ecosystems and in national parks where vulnerable fauna tend to be found. This study focuses on the proliferation of toxic cyanobacteria and the risks they represent in the rivers and reservoirs of two Spanish national [...] Read more.
Potentially toxic cyanobacterial communities are prolific in freshwater ecosystems and in national parks where vulnerable fauna tend to be found. This study focuses on the proliferation of toxic cyanobacteria and the risks they represent in the rivers and reservoirs of two Spanish national parks. As far as we know, this is the first time that an ecological, taxonomical and toxicological characterization of planktonic and benthic cyanotoxin-producing cyanobacteria is carried out in this type of protected areas in Spain. Our results, obtained during 2021 sampling campaigns, have confirmed the occurrence of cyanobacteria in these ecosystems and assessed the risks of these cyanobacteria to these ecosystems. An alarming occurrence of benthic mats, dominated mainly by Phormidium autumnale (also called Microcoleus autumnalis), a potentially anatoxin producer, has been observed in rivers from Sierra de Guadarrama National Park. In reservoirs from Monfragüe National Park, the planktonic communities have been dominated by Microcystis, Aphanizomenom, Arthrospira and Planktothrix. Genetic screening by PCR and sequencing have confirmed the presence of cyanotoxin biosynthesis genes (mcyE, anaF and sxtA) in all communities studied. The relationship among community diversity, the presence/concentration of cyanotoxins (microcystins, saxitoxins and anatoxins) and the environmental parameters measured is discussed. These results will contribute to preparing protocols for evaluating and managing the potential risk to visitors to, workers in and fauna of these protected ecosystems. Full article
18 pages, 281 KiB  
Article
Phormidium autumnale Growth and Anatoxin-a Production under Iron and Copper Stress
by Francine M. J. Harland, Susanna A. Wood, Elena Moltchanova, Wendy M. Williamson and Sally Gaw
Toxins 2013, 5(12), 2504-2521; https://doi.org/10.3390/toxins5122504 - 16 Dec 2013
Cited by 33 | Viewed by 9445
Abstract
Studies on planktonic cyanobacteria have shown variability in cyanotoxin production, in response to changes in growth phase and environmental factors. Few studies have investigated cyanotoxin regulation in benthic mat-forming species, despite increasing reports on poisoning events caused by ingestion of these organisms. In [...] Read more.
Studies on planktonic cyanobacteria have shown variability in cyanotoxin production, in response to changes in growth phase and environmental factors. Few studies have investigated cyanotoxin regulation in benthic mat-forming species, despite increasing reports on poisoning events caused by ingestion of these organisms. In this study, a method was developed to investigate changes in cyanotoxin quota in liquid cultures of benthic mat-forming cyanobacteria. Iron and copper are important in cellular processes and are well known to affect growth and selected metabolite production in cyanobacteria and algae. The effect of iron (40–4000 μg L1) and copper (2.5–250 μg L1) on growth and anatoxin-a quota in Phormidium autumnale was investigated in batch culture. These concentrations were chosen to span those found in freshwater, as well as those previously reported to be toxic to cyanobacteria. Anatoxin-a concentrations varied throughout the growth curve, with a maximum quota of between 0.49 and 0.55 pg cell1 measured within the first two weeks of growth. Growth rates were significantly affected by copper and iron concentrations (P < 0.0001); however, no statistically significant difference between anatoxin-a quota maxima was observed. When the iron concentrations were 800 and 4000 μg L1, the P. autumnale cultures did not firmly attach to the substratum. At 250 μg L1 copper or either 40 or 4000 μg L1 iron, growth was suppressed. Full article
(This article belongs to the Collection Marine and Freshwater Toxins)
Show Figures

Figure 1

Back to TopTop