Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Persicae semen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2455 KB  
Article
Paeoniflorin Improves Stroke by Modulating the ESR1 Pathway: Data Mining and Validation Based on Network Approaches
by Zhenshan Sun, Junjie Peng, Jiangbangrui Chu, Zhengyi Wang, Kefan Hu, Zhanpeng Feng, Mingfeng Zhou, Xingqin Wang, Songtao Qi, Zhu Zhang and Ken Kin Lam Yung
Pharmaceuticals 2025, 18(7), 933; https://doi.org/10.3390/ph18070933 - 20 Jun 2025
Viewed by 1124
Abstract
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the [...] Read more.
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the active compound interactions contained within these clinical cases, with experimental validation after target screening. Methods and Materials: Stroke-related targets were identified through GEO, DisGeNET, and Genecards. Active ingredients were extracted from BATMAN-TCM 2.0. All herbs and diseases were confirmed by the Pharmacopoeia of the People’s Republic of China (2020 edition) and Medical Subject Heading (MeSH). All networks in this study were constructed by Cytoscape, and data analysis was done by Python. All formulations and herbs were retrieved from the literature review. For the molecular docking process, Autodock was applied as the docking platform, and all the protein structures were downloaded from PDB. For experimental validation after target screening, HT22 cells were incubated with glucose-free DMEM and placed in an anaerobic chamber for 2 h. Subsequently, HT22 cells were reoxygenated for 24 h. Estrogen Receptor 1 (ESR1) protein levels were measured in vitro. Results: seven materials, including Angelicae Sinensis Radix, Pheretima, Chuanxiong Rhizoma, Persicae Semen, Astragali Radix, Carthami Flos, and Radix Paeoniae Rubra, were identified as the core herbs for the treatment of stroke. The targets of the stroke mechanism were screened, and the herbs-compound-target network was constructed. Among them, paeoniflorin (PF) was identified as the core active compound, and its interaction with ESR1 was verified by molecular docking as the key interaction for the treatment of stroke. In vitro experiments showed that PF inhibited cell apoptosis under hypoxia by increasing the expression of ESR1 compared with the oxygen-glucose deprivation-reperfusion (OGD/R) model group. Western showed that PF (100 μM, 200 μM) can significantly increase the decreased ESR1 protein level caused by the OGD/R model. Conclusions: seven key herbs were screened. Further bioinformatics and network pharmacology studies suggested that PF is expected to become a new active compound for the treatment of stroke. In vitro validation further demonstrated that PF enhanced neuronal survival and ESR1 expression under ischemic conditions, supporting its therapeutic candidacy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 2274 KB  
Article
Antioxidant Activity and Preclinical Safety of Semen persicae Extract
by Jing Yang, Yu Liu, Yingying Song, Qinqin Liu, Liqiong Jin and Ruofeng Shang
Int. J. Mol. Sci. 2024, 25(16), 8580; https://doi.org/10.3390/ijms25168580 - 6 Aug 2024
Cited by 2 | Viewed by 2365
Abstract
Semen persicae is the dried mature seeds of Prunus persica (L.) Batsch and P. davidiana (Carr.) Franch and is commonly used in traditional Chinese medicine (TCM) formulations because of its variety of biological effects. The present study aimed to evaluate the antioxidant activity [...] Read more.
Semen persicae is the dried mature seeds of Prunus persica (L.) Batsch and P. davidiana (Carr.) Franch and is commonly used in traditional Chinese medicine (TCM) formulations because of its variety of biological effects. The present study aimed to evaluate the antioxidant activity and toxicity profiles of semen persicae extract (SPE) after determining the amygdalin content (4.95%) using HPLC. Regarding the in vitro antioxidant activity, SPE with 2 mg/mL concentration scavenged 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and ABTS free radicals with rates of 51.78%, 55.47%, and 57.16%, respectively. The same concentration of SPE chelated 30.76% Fe2+. The in vitro cytotoxicity study revealed that SPE induced 92.45% cell viabilities of HEPG2 even at 2000 μg/mL. In the acute toxicity study, oral administration of SPE did not provoke mortality or any toxic signs at doses up to 2000 mg/kg bw. Repeated oral administration for 28 days at doses of 100, 300, and 600 mg/kg per day in rats did not show any toxicity signs or gross pathological abnormalities. The results of the present research provide basic reference data for SPE with a moderate effect on antioxidant activity and low toxicity for future screening of biological and pharmacological properties. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 4951 KB  
Article
Persicae Semen Promotes Bone Union in Rat Fractures by Stimulating Osteoblastogenesis through BMP-2 and Wnt Signaling
by Jae-Yun Jun, Jae-Hyun Kim, Minsun Kim, Sooyeon Hong, Myunghyun Kim, Gwang-Hyun Ryu, Jae Ho Park, Hyuk-Sang Jung and Youngjoo Sohn
Int. J. Mol. Sci. 2023, 24(8), 7388; https://doi.org/10.3390/ijms24087388 - 17 Apr 2023
Cited by 11 | Viewed by 2833
Abstract
Fractures cause extreme pain to patients and impair movement, thereby significantly reducing their quality of life. However, in fracture patients, movement of the fracture site is restricted through application of a cast, and they are reliant on conservative treatment through calcium intake. Persicae [...] Read more.
Fractures cause extreme pain to patients and impair movement, thereby significantly reducing their quality of life. However, in fracture patients, movement of the fracture site is restricted through application of a cast, and they are reliant on conservative treatment through calcium intake. Persicae semen (PS) is the dried mature seeds of Prunus persica (L.) Batsch, and in this study the effects of PS on osteoblast differentiation and bone union promotion were investigated. The osteoblast-differentiation-promoting effect of PS was investigated through alizarin red S and Von Kossa staining, and the regulatory role of PS on BMP-2 (Bmp2) and Wnt (Wnt10b) signaling, representing a key mechanism, was demonstrated at the protein and mRNA levels. In addition, the bone-union-promoting effect of PS was investigated in rats with fractured femurs. The results of the cell experiments showed that PS promotes mineralization and upregulates RUNX2 through BMP-2 and Wnt signaling. PS induced the expression of various osteoblast genes, including Alpl, Bglap, and Ibsp. The results of animal experiments show that the PS group had improved bone union and upregulated expression of osteogenic genes. Overall, the results of this study suggest that PS can promote fracture recovery by upregulating osteoblast differentiation and bone formation, and thus can be considered a new therapeutic alternative for fracture patients. Full article
(This article belongs to the Special Issue Musculoskeletal Development and Skeletal Pathophysiologies 2.0)
Show Figures

Figure 1

Back to TopTop