Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = PN radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6413 KiB  
Article
Targetless Radar–Camera Extrinsic Parameter Calibration Using Track-to-Track Association
by Xinyu Liu, Zhenmiao Deng and Gui Zhang
Sensors 2025, 25(3), 949; https://doi.org/10.3390/s25030949 - 5 Feb 2025
Viewed by 2126
Abstract
One of the challenges in calibrating millimeter-wave radar and camera lies in the sparse semantic information of the radar point cloud, making it hard to extract environment features corresponding to the images. To overcome this problem, we propose a track association algorithm for [...] Read more.
One of the challenges in calibrating millimeter-wave radar and camera lies in the sparse semantic information of the radar point cloud, making it hard to extract environment features corresponding to the images. To overcome this problem, we propose a track association algorithm for heterogeneous sensors, to achieve targetless calibration between the radar and camera. Our algorithm extracts corresponding points from millimeter-wave radar and image coordinate systems by considering the association of tracks from different sensors, without any explicit target or prior for the extrinsic parameter. Then, perspective-n-point (PnP) and nonlinear optimization algorithms are applied to obtain the extrinsic parameter. In an outdoor experiment, our algorithm achieved a track association accuracy of 96.43% and an average reprojection error of 2.6649 pixels. On the CARRADA dataset, our calibration method yielded a reprojection error of 3.1613 pixels, an average rotation error of 0.8141°, and an average translation error of 0.0754 m. Furthermore, robustness tests demonstrated the effectiveness of our calibration algorithm in the presence of noise. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 5347 KiB  
Article
Achieving High-Accuracy Target Recognition Using Few ISAR Images via Multi-Prototype Network with Attention Mechanism
by Linbo Zhang, Xiuting Zou, Shaofu Xu, Bowen Ma, Wenbin Lu, Zhenbin Lv and Weiwen Zou
Electronics 2024, 13(23), 4703; https://doi.org/10.3390/electronics13234703 - 28 Nov 2024
Viewed by 929
Abstract
Inverse synthetic aperture radar (ISAR) is a significant means of detection in space of non-cooperative targets, which means that the imaging geometry and associated parameters between the ISAR platform and the detection targets are unknown. In this way, a large number of ISAR [...] Read more.
Inverse synthetic aperture radar (ISAR) is a significant means of detection in space of non-cooperative targets, which means that the imaging geometry and associated parameters between the ISAR platform and the detection targets are unknown. In this way, a large number of ISAR images for high-accuracy target recognition are difficult to obtain. Recently, prototypical networks (PNs) have gained considerable attention as an effective method for few-shot learning. However, due to the specificity of the ISAR imaging mechanism, ISAR images often have unknown range and azimuth distortions, resulting in a poor imaging effect. Therefore, this condition poses a challenge for a PN to represent a class through a prototype. To address this issue, we use a multi-prototype network (MPN) with attention mechanism for ISAR image target recognition. The use of multiple prototypes eases the uncertainty associated with the fixed structure of a single prototype, enabling the capture of more comprehensive target information. Furthermore, to maximize the feature extraction capability of MPN for ISAR images, this method introduces the classical convolutional block attention module (CBAM) attentional mechanism, where CBAM generates attentional feature maps along channel and spatial dimensions to generate multiple robust prototypes. Experimental results demonstrate that this method outperforms state-of-the-art few-shot methods. In a four-class classification task, it achieved a target recognition accuracy of 95.08%, representing an improvement of 9.94–17.49% over several other few-shot approaches. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 850 KiB  
Article
Let It Snow: Intercomparison of Various Total and Snow Precipitation Data over the Tibetan Plateau
by Christine Kolbe, Boris Thies and Jörg Bendix
Atmosphere 2024, 15(9), 1076; https://doi.org/10.3390/atmos15091076 - 5 Sep 2024
Viewed by 1278
Abstract
The Global Precipitation Measurement Mission (GPM) improved spaceborne precipitation data. The GPM dual-frequency precipitation radar (DPR) provides information on total precipitation (TP), snowfall precipitation (SF) and snowfall flags (surface snowfall flag (SSF) and phase near surface (PNS)), among other variables. Especially snowfall data [...] Read more.
The Global Precipitation Measurement Mission (GPM) improved spaceborne precipitation data. The GPM dual-frequency precipitation radar (DPR) provides information on total precipitation (TP), snowfall precipitation (SF) and snowfall flags (surface snowfall flag (SSF) and phase near surface (PNS)), among other variables. Especially snowfall data were hardly validated. This study compares GPM DPR TP, SF and snowfall flags on the Tibetan Plateau (TiP) against TP and SF from six well-known model-based data sets used as ground truth: ERA 5, ERA 5 land, ERA Interim, MERRA 2, JRA 55 and HAR V2. The reanalysis data were checked for consistency. The results show overall high agreement in the cross-correlation with each other. The reanalysis data were compared to the GPM DPR snowfall flags, TP and SF. The intercomparison performs poorly for the GPM DPR snowfall flags (HSS = 0.06 for TP, HSS = 0.23 for SF), TP (HSS = 0.13) and SF (HSS = 0.31). Some studies proved temporal or spatial mismatches between spaceborne measurements and other data. We tested whether increasing the time lag of the reanalysis data (+/−three hours) or including the GPM DPR neighbor pixels (3 × 3 pixel window) improves the results. The intercomparison with the GPM DPR snowfall flags using the temporal adjustment improved the results significantly (HSS = 0.21 for TP, HSS = 0.41 for SF), whereas the spatial adjustment resulted only in small improvements (HSS = 0.12 for TP, HSS = 0.29 for SF). The intercomparison of the GPM DPR TP and SF was improved by temporal (HSS = 0.3 for TP, HSS = 0.48 for SF) and spatial adjustment (HSS = 0.35 for TP, HSS = 0.59 for SF). Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 9507 KiB  
Article
Sparse SAR Imaging Based on Non-Local Asymmetric Pixel-Shuffle Blind Spot Network
by Yao Zhao, Decheng Xiao, Zhouhao Pan, Bingo Wing-Kuen Ling, Ye Tian and Zhe Zhang
Remote Sens. 2024, 16(13), 2367; https://doi.org/10.3390/rs16132367 - 28 Jun 2024
Viewed by 1154
Abstract
The integration of Synthetic Aperture Radar (SAR) imaging technology with deep neural networks has experienced significant advancements in recent years. Yet, the scarcity of high-quality samples and the difficulty of extracting prior information from SAR data have experienced limited progress in this domain. [...] Read more.
The integration of Synthetic Aperture Radar (SAR) imaging technology with deep neural networks has experienced significant advancements in recent years. Yet, the scarcity of high-quality samples and the difficulty of extracting prior information from SAR data have experienced limited progress in this domain. This study introduces an innovative sparse SAR imaging approach using a self-supervised non-local asymmetric pixel-shuffle blind spot network. This strategy enables the network to be trained without labeled samples, thus solving the problem of the scarcity of high-quality samples. Through asymmetric pixel-shuffle downsampling (AP) operation, the spatial correlation between pixels is broken so that the blind spot network can adapt to the actual scene. The network also incorporates a non-local module (NLM) into its blind spot architecture, enhancing its capability to analyze a broader range of information and extract more comprehensive prior knowledge from SAR data. Subsequently, Plug and Play (PnP) technology is used to integrate the trained network into the sparse SAR imaging model to solve the regularization term problem. The optimization of the inverse problem is achieved through the Alternating Direction Method of Multipliers (ADMM) algorithm. The experimental results of the unlabeled samples demonstrate that our method significantly outperforms traditional techniques in reconstructing images across various regions. Full article
(This article belongs to the Special Issue Advances in Radar Imaging with Deep Learning Algorithms)
Show Figures

Graphical abstract

27 pages, 2065 KiB  
Article
Configurable Pseudo Noise Radar Imaging System Enabling Synchronous MIMO Channel Extension
by Niklas Bräunlich, Christoph W. Wagner, Jürgen Sachs and Giovanni Del Galdo
Sensors 2023, 23(5), 2454; https://doi.org/10.3390/s23052454 - 23 Feb 2023
Cited by 4 | Viewed by 3282
Abstract
In this article, we propose an evolved system design approach to ultra-wideband (UWB) radar based on pseudo-random noise (PRN) sequences, the key features of which are its user-adaptability to meet the demands provided by desired microwave imaging applications and its multichannel scalability. In [...] Read more.
In this article, we propose an evolved system design approach to ultra-wideband (UWB) radar based on pseudo-random noise (PRN) sequences, the key features of which are its user-adaptability to meet the demands provided by desired microwave imaging applications and its multichannel scalability. In light of providing a fully synchronized multichannel radar imaging system for short-range imaging as mine detection, non-destructive testing (NDT) or medical imaging, the advanced system architecture is presented with a special focus put on the implemented synchronization mechanism and clocking scheme. The core of the targeted adaptivity is provided by means of hardware, such as variable clock generators and dividers as well as programmable PRN generators. In addition to adaptive hardware, the customization of signal processing is feasible within an extensive open-source framework using the Red Pitaya® data acquisition platform. A system benchmark in terms of signal-to-noise ratio (SNR), jitter, and synchronization stability is conducted to determine the achievable performance of the prototype system put into practice. Furthermore, an outlook on the planned future development and performance improvement is provided. Full article
(This article belongs to the Special Issue Microwave-Based Sensors for Biological and Wireless Applications)
Show Figures

Figure 1

15 pages, 3212 KiB  
Article
PN Codes Estimation of Binary Phase Shift Keying Signal Based on Sparse Recovery for Radar Jammer
by Bo Peng and Qile Chen
Sensors 2023, 23(1), 554; https://doi.org/10.3390/s23010554 - 3 Jan 2023
Cited by 4 | Viewed by 3020
Abstract
Parameter estimation is extremely important for a radar jammer. With binary phase shift keying (BPSK) signals widely applied in radar systems, estimating the parameters of BPSK signals has attracted increasing attention. However, the BPSK signal is difficult to be processed by traditional time [...] Read more.
Parameter estimation is extremely important for a radar jammer. With binary phase shift keying (BPSK) signals widely applied in radar systems, estimating the parameters of BPSK signals has attracted increasing attention. However, the BPSK signal is difficult to be processed by traditional time frequency analysis methods due to its phase jumping and abrupt discontinuity features which makes it difficult to extract PN (PN) codes of the BPSK signal. To solve this problem, a two-step PN codes estimation method based on sparse recovery is introduced in this paper. The proposed method first pretreats the BPSK signal by estimating its center frequency and converting it to zero intermediate frequency (ZIF). The pretreatment transforms phase jumps of the BPSK signal into the level jumps of the ZIF signal. By nonconvex sparsity promoting regularization, the level jumps of the ZIF signal are extracted through an iterative algorithm. Its effectiveness is verified by numeric simulations and semiphysical tests. The corresponding results demonstrate that the proposed method is able to estimate PN codes from the BPSK signal in serious electromagnetic environments. Full article
(This article belongs to the Special Issue Advances in Radar Sensors)
Show Figures

Figure 1

11 pages, 1055 KiB  
Communication
Few-Shot Radar Emitter Signal Recognition Based on Attention-Balanced Prototypical Network
by Jing Huang, Xiao Li, Bin Wu, Xinyu Wu and Peng Li
Remote Sens. 2022, 14(23), 6101; https://doi.org/10.3390/rs14236101 - 1 Dec 2022
Cited by 5 | Viewed by 1856
Abstract
In recent years, radar emitter signal identification has been greatly developed via the utilization of deep learning and has achieved significant improvements in identification accuracy. However, with the continuous emergence of complex regime radars and the increasing complexity of the electromagnetic environment, some [...] Read more.
In recent years, radar emitter signal identification has been greatly developed via the utilization of deep learning and has achieved significant improvements in identification accuracy. However, with the continuous emergence of complex regime radars and the increasing complexity of the electromagnetic environment, some new kinds of radar emitter signals collected are not in sufficient quantities to satisfy the demand of deep learning. As a result, in this paper, we adopted the prototypical network (PN) belonging to metric-based meta-learning to realize few-shot radar emitter signal recognition with the aim of meeting the needs of modern electronic warfare. Additionally, considering the problems that may arise in the field of few-shot radar emitter signal recognition, such as discriminative location bias caused by a small number of base classes or the large difference between base classes and novel classes, we proposed an attention-balanced strategy to improve meta-learning. Specifically, each channel in the feature map is forced to make the same contribution in the distinguishment of different classes. In addition, for PN, taking into account that the feature vectors of each support sample in the class are different, we set a network to exploit the relation between each support sample in the same classes, and weighted each feature vector of the support samples according to the relation. Large quantities of experiments indicate that our algorithm possesses more advantages than other algorithms. Full article
Show Figures

Figure 1

19 pages, 16612 KiB  
Article
ST-PN: A Spatial Transformed Prototypical Network for Few-Shot SAR Image Classification
by Jinlei Cai, Yueting Zhang, Jiayi Guo, Xin Zhao, Junwei Lv and Yuxin Hu
Remote Sens. 2022, 14(9), 2019; https://doi.org/10.3390/rs14092019 - 22 Apr 2022
Cited by 19 | Viewed by 2947
Abstract
Few-shot learning has achieved great success in computer vision. However, when applied to Synthetic Aperture Radar Automatic Target Recognition (SAR-ATR), it tends to demonstrate a bad performance due to the ignorance of the differences between SAR images and optical ones. What is more, [...] Read more.
Few-shot learning has achieved great success in computer vision. However, when applied to Synthetic Aperture Radar Automatic Target Recognition (SAR-ATR), it tends to demonstrate a bad performance due to the ignorance of the differences between SAR images and optical ones. What is more, the same transformation on both images may cause different results, even some unexpected noise. In this paper, we propose an improved Prototypical Network (PN) based on Spatial Transformation, also known as ST-PN. Cascaded after the last convolutional layer, a spatial transformer module implements a feature-wise alignment rather than a pixel-wise one, so more semantic information can be exploited. In addition, there is always a huge divergence even for the same target when it comes to pixel-wise alignment. Moreover, it reduces computational cost with fewer parameters of the deeper layer. Here, a rotation transformation is used to reduce the discrepancies caused by different observation angles of the same class. Thefinal comparison of four extra losses indicates that a single cross-entropy loss is good enough to calculate the loss of distances. Our work achieves state-of-the-art performance on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset. Full article
Show Figures

Figure 1

16 pages, 2406 KiB  
Article
High-Resolution ISAR Imaging Based on Plug-and-Play 2D ADMM-Net
by Xiaoyong Li, Xueru Bai, Yujie Zhang and Feng Zhou
Remote Sens. 2022, 14(4), 901; https://doi.org/10.3390/rs14040901 - 14 Feb 2022
Cited by 11 | Viewed by 3028
Abstract
We propose a deep learning architecture, dubbed Plug-and-play 2D ADMM-Net (PAN), by combining model-driven deep networks and data-driven deep networks for effective high-resolution 2D inverse synthetic aperture radar (ISAR) imaging with various signal-to-noise ratios (SNR) and incomplete data scenarios. First, a sparse observation [...] Read more.
We propose a deep learning architecture, dubbed Plug-and-play 2D ADMM-Net (PAN), by combining model-driven deep networks and data-driven deep networks for effective high-resolution 2D inverse synthetic aperture radar (ISAR) imaging with various signal-to-noise ratios (SNR) and incomplete data scenarios. First, a sparse observation model of 2D ISAR imaging is established, and a 2D ADMM algorithm is presented. On this basis, using the plug and play (PnP) technique, PnP 2D ADMM is proposed, by combining the 2D ADMM algorithm and the deep denoising network DnCNN. Then, we unroll and generalize the PnP 2D ADMM to the PAN architecture, in which all adjustable parameters in the reconstruction layers, denoising layers, and multiplier update layers are learned by end-to-end training through back-propagation. Experimental results showed that the PAN with a single parameter set can achieve noise-robust ISAR imaging with superior reconstruction performance on incomplete simulated and measured data under different SNRs. Full article
Show Figures

Graphical abstract

20 pages, 9672 KiB  
Article
A Joint Low-Rank and Sparse Method for Reference Signal Purification in DTMB-Based Passive Bistatic Radar
by Luo Zuo, Jun Wang, Te Zhao and Zuhan Cheng
Sensors 2021, 21(11), 3607; https://doi.org/10.3390/s21113607 - 22 May 2021
Cited by 11 | Viewed by 2841
Abstract
In a digital terrestrial multimedia broadcasting (DTMB)-based passive bistatic radar (PBR) system, the received reference signal often suffers from serious multipath effect, which decreases the detection ability of low-observable targets in urban environments. In order to improve the target detection performance, a novel [...] Read more.
In a digital terrestrial multimedia broadcasting (DTMB)-based passive bistatic radar (PBR) system, the received reference signal often suffers from serious multipath effect, which decreases the detection ability of low-observable targets in urban environments. In order to improve the target detection performance, a novel reference signal purification method based on the low-rank and sparse feature is proposed in this paper. Specifically, this method firstly performs synchronization operations to the received reference signal and thus obtains the corresponding pseudo-noise (PN) sequences. Then, by innovatively exploiting the inherent low-rank structure of DTMB signals, the noise component in PN sequences is reduced. After that, a temporal correlation (TC)-based adaptive orthogonal matching pursuit (OMP) method, i.e., TC-AOMP, is performed to acquire the reliable channel estimation, whereby the previous noise-reduced PN sequences and a new halting criterion are utilized to improve channel estimation accuracy. Finally, the purification reference signal is obtained via equalization operation. The advantage of the proposed method is that it can obtain superior channel estimation performance and is more efficient compared to existing methods. Numerical and experimental results collected from the DTMB-based PBR system are presented to demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Collection Modern Radar Systems)
Show Figures

Figure 1

19 pages, 6875 KiB  
Article
A Low-Ambiguity Signal Waveform for Pseudolite Positioning Systems Based on Chirp
by Qing Liu, Zhigang Huang, Yanhong Kou and Jinling Wang
Sensors 2018, 18(5), 1326; https://doi.org/10.3390/s18051326 - 25 Apr 2018
Cited by 7 | Viewed by 4451
Abstract
Signal modulation is an essential design factor of a positioning system, which directly impacts the system’s potential performance. Chirp compressions have been widely applied in the fields of communication, radar, and indoor positioning owing to their high compression gain and good resistance to [...] Read more.
Signal modulation is an essential design factor of a positioning system, which directly impacts the system’s potential performance. Chirp compressions have been widely applied in the fields of communication, radar, and indoor positioning owing to their high compression gain and good resistance to narrowband interferences and multipath fading. Based on linear chirp, we present a modulation method named chirped pseudo-noise (ChPN). The mathematical model of the ChPN signal is provided with its auto-correlation function (ACF) and the power spectrum density (PSD) derived. The ChPN with orthogonal chirps is also discussed, which has better resistance to near-far effect. Then the generation and detection methods as well as the performances of ChPN are discussed by theoretical analysis and simulation. The results show that, for ChPN signals with the same main-lobe bandwidth (MLB), generally, the signal with a larger sweep bandwidth has better tracking precision and multipath resistance. ChPN yields slighter ACF peaks ambiguity due to its lower ACF side-peaks, although its tracking precision is a little worse than that of a binary offset carrier (BOC) with the same MLB. Moreover, ChPN provides better overall anti-multipath performance than BOC. For the ChPN signals with the same code rate, a signal with a larger sweep bandwidth has better performance in most aspects. In engineering practice, a ChPN receiver can be implemented by minor modifications of a BOC receiver. Thus, ChPN modulation shows promise for future positioning applications. Full article
(This article belongs to the Special Issue GNSS and Fusion with Other Sensors)
Show Figures

Figure 1

Back to TopTop