Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,117)

Search Parameters:
Keywords = PA operator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3162 KiB  
Article
Study on Separation of Desulfurization Wastewater in Ship Exhaust Gas Cleaning System with Rotating Dynamic Filtration
by Shiyong Wang, Juan Wu, Yanlin Wu and Wenbo Dong
Membranes 2025, 15(7), 214; https://doi.org/10.3390/membranes15070214 - 18 Jul 2025
Abstract
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental [...] Read more.
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental testing, theoretical analysis, and pilot-scale validation. Flux increases with temperature and pressure but decreases with feed concentration, remaining unaffected by circulation flow. For a small membrane (152 mm), flux consistently increases with rotational speed across all pressures. For a large membrane (374 mm), flux increases with rotational speed at 300 kPa but firstly increases and then decreases at 100 kPa. Filtrate turbidity in all experiments complies with regulatory standards. Due to the unique hydrodynamic characteristics of RDF, back pressure reduces the effective transmembrane pressure, whereas shear force mitigates concentration polarization and cake layer formation. Separation performance is governed by the balance between these two forces. The specific energy consumption of RDF is only 10–30% that of cross-flow filtration (CFF). Under optimized pilot-scale conditions, the wastewater was concentrated 30-fold, with filtrate turbidity consistently below 2 NTU, outperforming CFF. Moreover, continuous operation proves more suitable for marine environments. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 1745 KiB  
Article
A Study on the Performance of Vacuum Membrane Distillation in Treating Acidic, Simulated, Low-Level Radioactive Liquid Waste
by Sifan Chen, Yan Xu, Yuyong Wu, Yizhou Lu, Zhan Weng, Yaoguang Tao, Jianghai Liu and Baihua Jiang
Membranes 2025, 15(7), 213; https://doi.org/10.3390/membranes15070213 - 18 Jul 2025
Abstract
This study systematically explored the performance of a vacuum membrane distillation (VMD) system equipped with polytetrafluoroethylene (PTFE) hollow fiber membranes for treating simulated, acidic, low-level radioactive liquid waste. By focusing on key operational parameters, including feed temperature, vacuum pressure, and flow velocity, an [...] Read more.
This study systematically explored the performance of a vacuum membrane distillation (VMD) system equipped with polytetrafluoroethylene (PTFE) hollow fiber membranes for treating simulated, acidic, low-level radioactive liquid waste. By focusing on key operational parameters, including feed temperature, vacuum pressure, and flow velocity, an orthogonal experiment was designed to obtain the optimal parameters. Considering the potential application scenarios, the following two factors were also studied: the initial nuclide concentrations (0.5, 5, and 50 mg·L−1) and tributyl phosphate (TBP) concentrations (0, 20, and 100 mg·L−1) in the feed solution. The results indicated that the optimal operational parameters for VMD were as follows: a feed temperature of 70 °C, a vacuum pressure of 90 kPa, and a flow rate of 500 L·h−1. Under these parameters, the VMD system demonstrated a maximum permeate flux of 0.9 L·m−2·h−1, achieving a nuclide rejection rate exceeding 99.9%, as well as a nitric acid rejection rate of 99.4%. A significant negative correlation was observed between permeate flux and nuclide concentrations at levels above 50 mg·L−1. The presence of TBP in the feed solution produced membrane fouling, leading to flux decline and a reduced separation efficiency, with severity increasing with TBP concentration. The VMD process simultaneously achieved nuclide rejection and nitric acid concentration in acidic radioactive wastewater, demonstrating strong potential for nuclear wastewater treatment. Full article
Show Figures

Figure 1

20 pages, 3999 KiB  
Article
Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
by Marvin Diamantopoulos and Christoph Hochenauer
Appl. Sci. 2025, 15(14), 7992; https://doi.org/10.3390/app15147992 - 17 Jul 2025
Viewed by 24
Abstract
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic [...] Read more.
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter d32 of 570 × 10−6m, at an ALR of 8532 and a zero-shear viscosity of 15.9 Pa s. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions. Full article
Show Figures

Figure 1

17 pages, 2902 KiB  
Article
Analysis of Sand Production Mechanisms in Tight Gas Reservoirs: A Case Study from the Wenxing Gas Area, Northwestern Sichuan Basin
by Qilin Liu, Xinyao Zhang, Cheng Du, Kaixiang Di, Shiyi Xie, Huiying Tang, Jing Luo and Run Shu
Processes 2025, 13(7), 2278; https://doi.org/10.3390/pr13072278 - 17 Jul 2025
Viewed by 54
Abstract
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing [...] Read more.
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing fluid viscosity significantly affects the critical sand-flow velocity: with high-viscous slickwater (5 mPa·s), the critical velocity is 66% lower than with low-viscous formation water (1.15 mPa·s). The critical velocity for coated proppant is three times that of the mixed quartz sand and coated proppant. If the confining pressure is maintained, but the flow rate is further increased after the proppant flowback, a second instance of sand production can be observed. X-ray diffraction (XRD) tests were conducted for sand produced from practical wells to help find the sand production reasons. Based on experimental and field data analysis, sand production in Well X-1 primarily results from proppant detachment during rapid shut-in/open cycling operations, while in Well X-2, it originates from proppant crushing. The risk of formation sand production is low for both wells (the volumetric fraction of calcite tested from the produced sands is smaller than 0.5%). These findings highlight the importance of fluid viscosity, proppant consolidation, and pressure management in controlling sand production. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

10 pages, 2486 KiB  
Article
Performance of Miniature Carbon Nanotube Field Emission Pressure Sensor for X-Ray Source Applications
by Huizi Zhou, Wenguang Peng, Weijun Huang, Nini Ye and Changkun Dong
Micromachines 2025, 16(7), 817; https://doi.org/10.3390/mi16070817 - 17 Jul 2025
Viewed by 72
Abstract
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon [...] Read more.
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon nanotube (MWCNT) field emitters was investigated, and the in situ vacuum performance of X-ray tubes was studied for the advantages of miniature dimension and having low power consumption, extremely low outgassing, and low thermal disturbance compared to conventional ionization gauges. The MWCNT emitters with high crystallinity presented good pressure sensing performance for nitrogen, hydrogen, and an air mixture in the range of 10−7 to 10−3 Pa. The miniature MWCNT sensor is able to work and remain stable with high-temperature baking, important for VED applications. The sensor monitored the in situ pressures of the sealed X-ray tubes successfully with high-power operations and a long-term storage of over two years. The investigation showed that the vacuum of the sealed X-ray tube is typical at a low 10−4 Pa level, and pre-sealing degassing treatments are able to make the X-ray tube work under high vacuum levels with less outgassing and keep a stable high vacuum for a long period of time. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

26 pages, 4282 KiB  
Article
Optimizing Perforated Duct Systems for Energy-Efficient Ventilation in Semi-Closed Greenhouses Through Process Regulation
by Chuanqing Wang, Jianlu Fu, Qiusheng Zhang, Baoyong Sheng, Fen He, Guanshan Zhang, Xiaoming Ding and Nan Cao
Processes 2025, 13(7), 2253; https://doi.org/10.3390/pr13072253 - 15 Jul 2025
Viewed by 175
Abstract
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), [...] Read more.
Traditional perforated duct designs fail to resolve the energy consumption-uniformity conflict in semi-closed greenhouses. To address this, we develop a CFD-RSM-NSGA-II framework that simultaneously minimizes velocity non-uniformity (CV-v), pressure loss (ΔP), and temperature variation (CV-t). Key parameters—hole diameter (6–10 mm), spacing (30–70 mm), and inlet velocity (4–8 m/s)—are co-optimized. Model validation showed that the mean relative errors were 8.6% for velocity, 2.3% for temperature, and pressure deviations below 5 Pa, with the response surface model achieving an R2 of 0.9831 (p < 0.0001). Larger hole diameters improved CV-v, while wider spacings led to a decrease in uniformity. Pressure loss followed an opposite trend. Temperature variation was mostly affected by inlet velocity. Sensitivity analysis revealed that hole diameter was the most influential factor, followed by spacing and velocity, with a significant interaction between diameter and spacing. Using entropy-weighted TOPSIS coupled with NSGA-II, the optimization identified an optimal configuration (hole diameter = 9.0 mm, spacing = 65 mm, velocity = 7.0 m/s). This solution achieved a 58.8% reduction in CV-v, a 10.8% decrease in ΔP, and a 5.2% improvement in CV-t, while stabilizing inlet static pressure at 72.8 Pa. Critically, it reduced power consumption by 17.4%—directly lowering operational costs for farmers. The “larger diameter, wider spacing” strategy resolves energy-uniformity conflicts, demonstrating how integrated multi-objective process control enables efficient greenhouse ventilation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

14 pages, 3779 KiB  
Article
Technological Parameter Optimization of Double-Press Precision Depth-Control Seeding and Its Application in Rice Production
by Yangjie Shi, Xingye Shen, Xinhui Cheng, Jintao Xu, Jiawang Hong, Lianjie Han, Xiaobo Xi and Ruihong Zhang
Agronomy 2025, 15(7), 1704; https://doi.org/10.3390/agronomy15071704 - 15 Jul 2025
Viewed by 173
Abstract
Current rice cultivation relies on mechanical transplanting, which is costly and complex, and direct seeding, which suffers from poor quality and low efficiency. To address these issues, a double-press precision depth-control seeding method was developed in this study. Discrete element modeling (DEM) was [...] Read more.
Current rice cultivation relies on mechanical transplanting, which is costly and complex, and direct seeding, which suffers from poor quality and low efficiency. To address these issues, a double-press precision depth-control seeding method was developed in this study. Discrete element modeling (DEM) was employed to optimize key operational parameters—compaction force, soil covering cutter rotational speed, and penetration depth—using qualified seeding depth and missed seeding rates as performance metrics. Optimal results were achieved at a 60 kPa compaction force, a 300 rpm rotational speed, and a 7 cm penetration depth. A prototype seeder was manufactured and evaluated in three-year field trials against conventional dry direct seeders and mechanical transplanters. The double-press seeder demonstrated significantly superior performance compared to conventional direct seeding. It optimized the crop population structure by maintaining a high tiller number while increasing the productive tiller rate, resulting in stable annual yields exceeding 10.11 t·hm−2. Although its yield was slightly lower than that of mechanical transplanting, the double-press seeder offers a compelling practical alternative due to its operational convenience and economic benefits. Full article
Show Figures

Figure 1

17 pages, 3865 KiB  
Article
Epoxy Resin/Ionic Liquid Composite as a New Promising Coating Material with Improved Toughness and Antibiofilm Activity
by Sergiy Rogalsky, Olena Moshynets, Oleg Dzhuzha, Yevheniia Lobko, Anastasiia Hubina, Alina Madalina Darabut, Yaroslav Romanenko, Oksana Tarasyuk and Geert Potters
Coatings 2025, 15(7), 821; https://doi.org/10.3390/coatings15070821 - 14 Jul 2025
Viewed by 222
Abstract
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and [...] Read more.
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and 30 wt% of this IL was prepared by dissolution of C12C1IM-DBS in commercial DER 331 epoxy resin, followed by a curing phase with diethylenetriamine. Infrared analysis revealed physicochemical interactions between the hydroxyl groups of the resin and the IL. Spectrophotometric studies showed no release of C12C1IM-DBS after 30 days of exposure of the modified coatings to water. The plasticizing effect of the IL on the epoxy resin was established by differential scanning calorimetry analysis. The introduction of 10 and 20% C12C1IM-DBS into DER 331 reduced its glass transition temperature from 122.8 °C to 109.3 and 91.5 °C, respectively. The hardness of epoxy resin decreased by approximately 26% after the introduction of the IL. Moreover, DER 331/C12C1IM-DBS coatings on steel substrates showed significantly improved impact resistance compared to neat resin. The antibiofilm efficiency of DER 331/C12C1IM-DBS coatings was evaluated by assessing the capability of two biofilm-forming model strains, Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa PA01, to form attached biofilms on the surface. The IL effectively inhibited S. aureus surface-associated biofilm development even at the lowest content of 10%. On the contrary, an approximately 50% inhibition of biofilm metabolic activity was detected for DER 331/C12C1IM-DBS coatings containing 20% and 30% of the IL. Overall, the results of this study indicate that the hydrophobic IL C12C1IM-DBS is an efficient modifying additive for epoxy resins, which can significantly improve their operational properties for various industrial applications. Full article
Show Figures

Figure 1

17 pages, 1016 KiB  
Article
Design of Wideband Power Amplifier Using Improved Particle Swarm Optimization with Output Power and Efficiency Constraints
by Hanyue Wang, Yunqin Chen, Wa Kong, Jianwei Qi, Zhaowen Zheng and Jing Xia
Electronics 2025, 14(14), 2813; https://doi.org/10.3390/electronics14142813 - 12 Jul 2025
Viewed by 231
Abstract
In order to expand the bandwidth of the power amplifier (PA), this paper proposes a PA optimization design method based on improved particle swarm optimization (PSO) with output power and efficiency as optimization objectives. Simulated annealing strategy and adaptive inertia weight are introduced [...] Read more.
In order to expand the bandwidth of the power amplifier (PA), this paper proposes a PA optimization design method based on improved particle swarm optimization (PSO) with output power and efficiency as optimization objectives. Simulated annealing strategy and adaptive inertia weight are introduced to PSO to achieve the global optimum and accelerate the convergence speed. Considering performance metrics of PA, such as the efficiency and output power, a piecewise objective function is formulated for wideband PA optimization design. For validation, a wideband PA operating at 0.5–4.3 GHz (fractional bandwidth of 158.3%) was designed and fabricated. Measured results show a saturated output power ranging from 39.7 to 42.4 dBm and an efficiency between 60.5 and 68.8% within the operating bandwidth. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 3836 KiB  
Article
Porous-Cladding Polydimethylsiloxane Optical Waveguide for Biomedical Pressure Sensing Applications
by Koffi Novignon Amouzou, Alberto Alonso Romero, Dipankar Sengupta, Camila Aparecida Zimmermann, Aashutosh Kumar, Normand Gravel, Jean-Marc Lina, Xavier Daxhelet and Bora Ung
Sensors 2025, 25(14), 4311; https://doi.org/10.3390/s25144311 - 10 Jul 2025
Viewed by 171
Abstract
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The [...] Read more.
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The waveguide’s optical losses can be temperature-controlled during the fabrication process by controlling the quantity of microbubbles incorporated (2% approximately for samples made at 70 °C). By controlling the precuring temperature, the microbubbles are incorporated into the waveguides during the simple and cost-effective fabrication process through the casting and molding method. For these samples, we measured good optical loss tradeoff of the order of 1.85 dB/cm, which means that it is possible to fabricate a solid-core/clad waveguide with porous cladding able to guide light properly. We demonstrated the microbubble concentration control in the waveguide, and we measured an average diameter of 239 ± 16 µm. A sensitivity to pressure of 0.1035 dB/kPa optical power loss was measured. The results show that in a biomedical dynamic pressure range (0 to 13.3 kPa), this new device indicates the critical pressure threshold level, which constitutes a crucial asset for potential applications such as pressure injury prevention. Full article
Show Figures

Graphical abstract

23 pages, 4079 KiB  
Article
Thermodynamic Characteristics of Compressed Air in Salt Caverns of CAES: Considering Air Injection for Brine Drainage
by Shizhong Sun, Bin Wu, Yonggao Yin, Liang Shao, Rui Li, Xiaofeng Jiang, Yu Sun, Xiaodong Huo and Chen Ling
Energies 2025, 18(14), 3649; https://doi.org/10.3390/en18143649 - 10 Jul 2025
Viewed by 189
Abstract
The air injection for brine drainage affects the thermodynamic characteristics of salt caverns in the operation of compressed air energy storage (CAES). This study develops a thermodynamic model to predict temperature and pressure variations during brine drainage and operational cycles, validated against Huntorf [...] Read more.
The air injection for brine drainage affects the thermodynamic characteristics of salt caverns in the operation of compressed air energy storage (CAES). This study develops a thermodynamic model to predict temperature and pressure variations during brine drainage and operational cycles, validated against Huntorf plant data. Results demonstrate that increasing the air injection flow rate from 80 to 120 kg/s reduces the brine drainage initiation time by up to 47.3% and lowers the terminal brine drainage pressure by 0.62 MPa, while raising the maximum air temperature by 4.9 K. Similarly, expanding the brine drainage pipeline cross-sectional area from 2.99 m2 to 9.57 m2 reduces the total drainage time by 33.7%. Crucially, these parameters determine the initial pressure and temperature at the completion of brine drainage, which subsequently shape the pressure bounds of the operational cycles, with variations reaching 691.5 kPa, and the peak temperature fluctuations, with differences of up to 4.9 K during the first cycle. This research offers insights into optimizing the design and operation of the CAES system with salt cavern air storage. Full article
Show Figures

Figure 1

24 pages, 13675 KiB  
Article
Microscopic Investigation of the Effect of Different Wormhole Configurations on CO2-Based Cyclic Solvent Injection in Post-CHOPS Reservoirs
by Sepideh Palizdan, Farshid Torabi and Afsar Jaffar Ali
Processes 2025, 13(7), 2194; https://doi.org/10.3390/pr13072194 - 9 Jul 2025
Viewed by 173
Abstract
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one [...] Read more.
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one of the main mechanisms of the CSI process. However, due to the presence of complex high-permeable channels known as wormholes in Post-Cold Heavy Oil Production with Sands (Post-CHOPS) reservoirs, understanding the effect of each operational parameter on the performance of the CSI process in these reservoirs requires a pore-scale investigation of different wormhole configurations. Therefore, in this project, a comprehensive microfluidic experimental investigation into the effect of symmetrical and asymmetrical wormholes during the CSI process has been conducted. A total of 11 tests were designed, considering four different microfluidic systems with various wormhole configurations. Various operational parameters, including solvent type, pressure depletion rate, and the number of cycles, were considered to assess their effects on foamy oil behavior in post-CHOPS reservoirs in the presence of wormholes. The finding revealed that the wormhole configuration plays a crucial role in controlling the oil production behavior. While the presence of the wormhole in a symmetrical design could positively improve oil production, it would restrict oil production in an asymmetrical design. To address this challenge, we used the solvent mixture containing 30% propane that outperformed CO2, overcame the impact of the asymmetrical wormhole, and increased the total recovery factor by 14% under a 12 kPa/min pressure depletion rate compared to utilizing pure CO2. Moreover, the results showed that applying a lower pressure depletion rate at 4 kPa/min could recover a slightly higher amount of oil, approximately 2%, during the first cycle compared to tests conducted under higher pressure depletion rates. However, in later cycles, a higher pressure depletion rate at 12 kPa/min significantly improved foamy oil flow quality and, subsequently, heavy oil recovery. The interesting finding, as observed, is the gap difference between the total recovery factor at the end of the cycle and the recovery factor after the first cycle, which increases noticeably with higher pressure depletion rate, increasing from 9.5% under 4 kPa/min to 16% under 12 kPa/min. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

16 pages, 736 KiB  
Article
Right Atrial Pressure/Pulmonary Capillary Wedge Pressure Ratio Predicts In-Hospital Mortality in Left Ventricular Assist Device Recipients
by Berhan Keskin, Aykun Hakgor, Bilge Yilmaz, Korhan Erkanli, Beytullah Cakal, Arzu Yazar, Yahya Yildiz, Bilal Boztosun and Ibrahim Oguz Karaca
J. Clin. Med. 2025, 14(13), 4784; https://doi.org/10.3390/jcm14134784 - 7 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Right ventricular failure (RVF) is a major contributor to early mortality after left ventricular assist device (LVAD) implantation. While various markers of right ventricular function and right ventriculoarterial coupling have been proposed, their value in predicting in-hospital mortality remains unclear. This [...] Read more.
Background/Objectives: Right ventricular failure (RVF) is a major contributor to early mortality after left ventricular assist device (LVAD) implantation. While various markers of right ventricular function and right ventriculoarterial coupling have been proposed, their value in predicting in-hospital mortality remains unclear. This study aimed to investigate the prognostic significance of the right atrial pressure/pulmonary capillary wedge pressure (RAP/PCWP) ratio—a surrogate of RV–pulmonary artery (PA) coupling—for in-hospital mortality following LVAD implantation. Methods: This retrospective single-center study included 44 patients who underwent LVAD implantation. Preoperative clinical, echocardiographic, and invasive hemodynamic parameters were collected. The optimal RAP/PCWP ratio cut-off was determined using receiver operating characteristic (ROC) analysis. Predictors of in-hospital mortality were assessed using univariate and multivariate logistic regression. Results: Patients were stratified into high (≥0.47) and low (<0.47) RAP/PCWP ratio groups. In-hospital mortality was significantly higher in the high RAP/PCWP group (46% vs. 10%, p = 0.020). The optimal cut-off for the RAP/PCWP ratio was 0.47 (AUC: 0.829). In multivariate analysis, RAP/PCWP ratio (OR: 3.48 per 0.1 increase, p = 0.020) and INTERMACS 1–2 profile (OR: 39.19, p = 0.026) were independent predictors of in-hospital mortality. Conclusions: Preoperative RAP/PCWP ratio, as a surrogate of right ventriculoarterial coupling, independently predicts in-hospital mortality following LVAD implantation. Its incorporation into preoperative assessment may enhance risk stratification and guide clinical management in this high-risk population. Full article
(This article belongs to the Special Issue Advanced Therapy for Heart Failure and Other Combined Diseases)
Show Figures

Graphical abstract

18 pages, 3954 KiB  
Article
Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading
by Shuai Qi, Jinhui Liu, Wei Ma, Jing Wang, Houwang Bai and Shaojian Wang
Appl. Sci. 2025, 15(13), 7590; https://doi.org/10.3390/app15137590 - 7 Jul 2025
Viewed by 189
Abstract
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect [...] Read more.
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect of w through monotonic triaxial testing. Three typical remolding water contents (w = 19%, 27.5% and 35%) and three confining pressures (σ3 = 200 kPa, 700 kPa and 1200 kPa) were considered. Results showed that the mechanical behavior of frozen clay soils displayed a clear dependence on w, which was controlled by microstructural evolution. As w increased, the shear strength qmax, resilient modulus E0 and cohesion c increased, which resulted from the progressive development of ice bonding within the shear plane. A threshold w value was found at wopt = 27.5%, marking a structural transition and separating the variations of qmax, E0 and c into two regimes. When w ≤ 27.5%, the soil fabric was controlled by clay aggregates. As w increased, the growth in ice cementation was confined within these aggregates, leading to limited increase in qmax, E0 and c. However, as w exceeded 27.5%, the soil fabric transitioned into a homogeneous matrix of dispersed clay particles. In this case, increasing w greatly promoted the development of an interconnected ice cementation network, thus significantly facilitating the increase in qmax, E0 and c. The friction angle φ decreased with w increasing, primarily due to the lubrication effect caused by the growing ice. In addition, the enhanced lubrication effect in the clay particle-dominated fabric (w > 27.5%) resulted in a larger reduction rate of φ. Regarding Poisson’s ratio v and dilation angle ψ, the w increase led to growth in both parameters. This phenomenon could be explained by the increased involvement of solid ice into the soil structure. Full article
Show Figures

Figure 1

29 pages, 8004 KiB  
Article
The Development of an Air Suction Precision Seed-Metering Device for Rice Plot Breeding
by Wei Qin, Yuwu Li, Cheng Qian, Zhuorong Fan, Daoqing Yan, Guo Zou, Siqian Liu, Zaiman Wang, Ying Zang and Minghua Zhang
Agronomy 2025, 15(7), 1642; https://doi.org/10.3390/agronomy15071642 - 5 Jul 2025
Viewed by 286
Abstract
To address the lack of specialized seeding equipment and low manual seeding efficiency in rice plot breeding, this study developed an air suction precision seed-metering device for rice plot breeding, featuring automatic seed-switching and seed-clearing functions controlled by an STM32 microcontroller. Firstly, based [...] Read more.
To address the lack of specialized seeding equipment and low manual seeding efficiency in rice plot breeding, this study developed an air suction precision seed-metering device for rice plot breeding, featuring automatic seed-switching and seed-clearing functions controlled by an STM32 microcontroller. Firstly, based on morphological analysis and MATLAB image processing, an active contour method was used to construct a suction hole model. Secondly, to meet the non-contaminated switching requirements between rice varieties, an electrically controlled seed-switching and seed-clearing mechanism was developed based on QR code-based precise recognition and positioning. Using 10 rice varieties as experimental materials, performance tests were conducted. The results showed that the seed-switching mechanism had single and cumulative errors under 0.4°, and the seed-clearing rate reached 100% with an average clearing time below 0.88 s. At a rotational speed of 20 r·min−1 and negative pressure of 3200 Pa, seed-filling performance was optimal for all rice varieties. Among them, the rice variety Nayou 6388 exhibited the best seed-filling performance, with a 0.8% missing seed rate, 97.6% single and double seed rate, and 1.6% multiple seed rate. In double-row coordinated tests, each seed-metering device independently completed seed switching and maintained synchronized operation, meeting agronomic requirements for accurate seed switching/clearing and precision seed filling in rice plot breeding. Full article
(This article belongs to the Collection Advances of Agricultural Robotics in Sustainable Agriculture 4.0)
Show Figures

Figure 1

Back to TopTop