Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,116)

Search Parameters:
Keywords = P450 enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 917 KiB  
Article
Relationship Between Prostaglandin and Interleukin Concentrations in Seminal Fluid and Their Influence on the Rate of Fertilization in Men Undergoing ICSI
by Houda Amor, Fatina W. Dahadhah, Peter Michael Jankowski, Rami Al Nasser, Lisa Jung, Ingolf Juhasz-Böss, Erich Franz Solomayer and Mohamad Eid Hammadeh
Int. J. Mol. Sci. 2025, 26(15), 7627; https://doi.org/10.3390/ijms26157627 (registering DOI) - 6 Aug 2025
Abstract
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, [...] Read more.
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, in general and after intracytoplasmic sperm injection (ICSI) procedures. This study aimed to investigate the possible influence of interleukins IL-17 and IL-18, and prostaglandins PGE2 and PGF2α on male infertility. Semen samples were collected from 58 males who underwent the ICSI procedure. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IL-17, IL-18, PGE2, and PGF2α, and these concentrations were then correlated with semen parameters and the rate of fertilization. Furthermore, the chromatin integrity of the sperm was evaluated with an Acridine Orange (AO) assay. The results showed an inversely proportional relationship between the AO binding intensity and fertilization rate (r = −0.394; p ≤ 0.002). Furthermore, a negative correlation was observed between the IL-18 concentration and positive AO (p ≤ 0.021). Moreover, the IL-18 concentration was positively correlated with the fertilization rate (p ≤ 0.05). In contrast, IL-17 did not significantly correlate with any semen parameters or with the fertilization rate. Seminal PGE2 levels were significantly correlated with embryo cleavage at 72 h (p ≤ 0.05). To conclude, this study revealed that denaturation of sperm nuclear deoxyribonucleic acid (DNA) contributes to low fertilization rates. In addition, this study proposed a potential role for IL-18 in fertilization. PGE2 likely influences embryo development, but further studies are needed to examine the impact of seminal PGE2 on the oocyte to fully elucidate its contribution to this complex biological process. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
14 pages, 313 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
18 pages, 990 KiB  
Article
Non-Conventional Yeasts for Beer Production—Primary Screening of Strains
by Polina Zapryanova, Yordanka Gaytanska, Vesela Shopska, Rositsa Denkova-Kostova and Georgi Kostov
Beverages 2025, 11(4), 114; https://doi.org/10.3390/beverages11040114 - 6 Aug 2025
Abstract
Although beer fermentation has traditionally been carried out with Saccharomyces, the boom in craft brewing has led to the use of non-conventional yeast species for beer production. This group also includes non-Saccharomyces starters, which are commonly used in winemaking and which [...] Read more.
Although beer fermentation has traditionally been carried out with Saccharomyces, the boom in craft brewing has led to the use of non-conventional yeast species for beer production. This group also includes non-Saccharomyces starters, which are commonly used in winemaking and which have different technological characteristics compared to standard representatives of the Saccharomyces genus. One of the important characteristics of the non-Saccharomyces group is the richer enzyme profile, which leads to the production of beverages with different taste and aroma profiles. The aim of this study was to investigate sweet and hopped wort fermentation with seven strains of active dry non-conventional yeasts of Lachancea spp., Metschnikowia spp., Torulaspora spp. and a mixed culture of Saccharomyces cerevisiae and Torulaspora delbrueckii. One ale and one lager active dry yeast strain were used as control strains. The extract consumption, ethanol production, degree of fermentation, pH drop, as well as the yeast secondary metabolites formed by the yeast (higher alcohols, esters and aldehydes) in sweet and hopped wort were investigated. The results indicated that all of the studied types of non-conventional yeasts have serious potential for use in beer production in order to obtain new beer styles. For the purposes of this study, statistical methods, principle component analysis (PCA) and correlation analysis were used, thus establishing the difference in the fermentation kinetics of the growth in the studied species in sweet and hopped wort. It was found that hopping had a significant influence on the fermentation kinetics of some of the species, which was probably due to the inhibitory effect of the iso-alpha-acids of hops. Directions for future research with the studied yeast species in beer production are presented. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Figure 1

11 pages, 811 KiB  
Article
Activity Expression and Property Analysis of Codon-Optimized Polyphenol Oxidase from Camellia sinensis in Pichia pastoris KM71
by Xin Zhang, Yong-Quan Xu, Jun-Feng Yin and Chun Zou
Foods 2025, 14(15), 2749; https://doi.org/10.3390/foods14152749 - 6 Aug 2025
Abstract
Tea polyphenol oxidase (CsPPO) is a crucial enzyme involved in the production of tea and tea products. However, the recombinant expression of CsPPO in microorganisms is often hindered by challenges such as inclusion body formation and extremely low enzyme activity. In this study, [...] Read more.
Tea polyphenol oxidase (CsPPO) is a crucial enzyme involved in the production of tea and tea products. However, the recombinant expression of CsPPO in microorganisms is often hindered by challenges such as inclusion body formation and extremely low enzyme activity. In this study, the CsPPO gene (1800 bp) from Camellia sinensis cv. Yihongzao was cloned and 14.5% of its codons were optimized for Pichia pastoris expression. Compared to pre-optimization, codon optimization significantly enhanced CsPPO production in P. pastoris KM71, yielding a 42.89-fold increase in enzyme activity (1286.67 U/mL). The optimal temperature and pH for recombinant CsPPO were determined to be 40 °C and 5.5, respectively. This study demonstrates that codon optimization effectively improves the expression of plant-derived enzymes such as CsPPO in eukaryotic expression systems. Future research should explore the long-term stability of recombinant CsPPO and its potential applications in tea fermentation processes and functional food development. Full article
Show Figures

Figure 1

16 pages, 1185 KiB  
Article
Hematological, Enzymatic, and Endocrine Response to Intense Exercise in Lidia Breed Cattle During the Roping Bull Bullfighting Celebration
by Julio Sedeño, Salvador Ruiz, Germán Martín and Juan Carlos Gardón
Animals 2025, 15(15), 2303; https://doi.org/10.3390/ani15152303 - 6 Aug 2025
Abstract
The Lidia cattle breed is featured in several traditional popular bullfighting festivals throughout Spain, including the “Toro de Cuerda” event, in which the animals are subjected to intense physical exercise. However, the physiological impact and welfare implications of these activities remain poorly characterized. [...] Read more.
The Lidia cattle breed is featured in several traditional popular bullfighting festivals throughout Spain, including the “Toro de Cuerda” event, in which the animals are subjected to intense physical exercise. However, the physiological impact and welfare implications of these activities remain poorly characterized. This study aimed to evaluate the stress response and muscle damage in Lidia breed bulls during roping bull celebrations through comprehensive blood analysis. Blood samples were collected from 53 adult male Lidia bulls before and after a standardized 45 min continuous running exercise during traditional roping bull events in four Spanish autonomous regions. Hematological parameters, muscle enzymes (creatine kinase, lactate dehydrogenase, lactate), and stress hormones (cortisol and ACTH) were analyzed. Significant increases (p < 0.05) were observed in leukocytes, lymphocytes, monocytes, eosinophils, neutrophils, erythrocytes, hematocrit, hemoglobin, and post-exercise platelets. Muscle enzymes showed marked elevations, with creatine kinase increasing up to 10-fold above baseline values. Stress hormones, cortisol and ACTH, also demonstrated significant increases. Despite the magnitude of these changes, all parameters remained within established reference ranges for the bovine species. This study provides the first physiological assessment of Lidia cattle during popular bullfighting celebrations, establishing baseline data for evidence-based welfare evaluation and management protocols. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

22 pages, 1419 KiB  
Article
Bioconversion of Olive Pomace: A Solid-State Fermentation Strategy with Aspergillus sp. for Detoxification and Enzyme Production
by Laura A. Rodríguez, María Carla Groff, Sofía Alejandra Garay, María Eugenia Díaz, María Fabiana Sardella and Gustavo Scaglia
Fermentation 2025, 11(8), 456; https://doi.org/10.3390/fermentation11080456 - 6 Aug 2025
Abstract
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which [...] Read more.
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which limit its direct reuse due to phytotoxicity. A native strain of Aspergillus sp., isolated from OP, was employed as the biological agent, while grape pomace (GP) was added as a co-substrate to enhance substrate structure. Fermentations were conducted at two scales, Petri dishes (20 g) and a fixed-bed bioreactor (FBR, 2 kg), under controlled conditions (25 °C, 7 days). Key parameters monitored included dry and wet weight loss, pH, color, phenolic content, and enzymatic activity. Significant reductions in color and polyphenol content were achieved, reaching 68% in Petri dishes and 88.1% in the FBR, respectively. In the FBR, simultaneous monitoring of dry and wet weight loss enabled the estimation of fungal biotransformation, revealing a hysteresis phenomenon not previously reported in SSF studies. Enzymes such as xylanase, endopolygalacturonase, cellulase, and tannase exhibited peak activities between 150 and 180 h, with maximum values of 424.6 U·g−1, 153.6 U·g−1, 67.43 U·g−1, and 6.72 U·g−1, respectively. The experimental data for weight loss, enzyme production, and phenolic reduction were accurately described by logistic and first-order models. These findings demonstrate the high metabolic efficiency of the fungal isolate under SSF conditions and support the feasibility of scaling up this process. The proposed strategy offers a low-cost and sustainable solution for OP valorization, aligning with circular economy principles by transforming agro-industrial residues into valuable bioproducts. Full article
Show Figures

Figure 1

29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

16 pages, 22496 KiB  
Article
Comparative Genomics and Adaptive Evolution of Bifidobacterium adolescentis in Geographically Distinct Human Gut Populations
by Pei Fu, Hao Qi and Wenjun Liu
Foods 2025, 14(15), 2747; https://doi.org/10.3390/foods14152747 - 6 Aug 2025
Abstract
Bifidobacterium adolescentis is prevalent in the gastrointestinal tract of healthy humans, and significantly influences host health. Recent studies have predominantly investigated the probiotic characteristics of individual strains and their specific metabolic roles, whereas analyses at the population genome level have been limited to [...] Read more.
Bifidobacterium adolescentis is prevalent in the gastrointestinal tract of healthy humans, and significantly influences host health. Recent studies have predominantly investigated the probiotic characteristics of individual strains and their specific metabolic roles, whereas analyses at the population genome level have been limited to date. This study conducted a comparative genomics analysis of 543 B. adolescentis genomes to explore genetic background variations and functional gene differences across geographically diverse populations. The results revealed significant differences in genome size and GC content among populations from Asia, Europe, and North America (p < 0.05). The pan-gene exhibited an open structure, reflecting the substantial genetic diversity within B. adolescentis. Functional annotation demonstrated that B. adolescentis possesses numerous protein-coding genes and abundant carbohydrate-active enzymes (CAZys) implicated in carbohydrate degradation and transformation. Population-specific CAZys were identified, suggesting adaptive evolution driven by distinct regional dietary patterns. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 1298 KiB  
Article
Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities
by Jianzhou Shi, Jinbing Zhao, Bingxue Dong, Na Li, Lunguang Yao and Guirong Sun
Animals 2025, 15(15), 2300; https://doi.org/10.3390/ani15152300 - 6 Aug 2025
Abstract
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), [...] Read more.
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), we screened and validated miRNA SNPs. A SNP mutation in the miR-3528 precursor region was identified. Specific primers were designed to amplify the polymorphic fragment. Genotyping was performed for this individual SNP across the population, using the MassArray system. Association analyses were conducted between this SNP and chicken growth and body measurement traits, carcass traits, meat quality traits, and serum enzyme activities. (3) The rs14098602 (+12 bp A > G) was identified within the precursor region of gga-miR-3528. Significant associations (p < 0.05) were observed between this SNP and chicken growth traits (body weight at the age of 0 day, body weight at the age of 2 weeks, and body weight at the age of 4 weeks), carcass traits (evisceration weight), meat quality traits (subcutaneous fat rate and pectoral muscle density), and serum enzyme activities (total protein, albumin, globulin, cholinesterase, and lactate dehydrogenase). (4) These findings suggest that the polymorphism at rs14098602 may influence chicken growth, meat quality, and serum biochemical indices, through specific mechanisms. The gga-miR-3528 gene likely plays an important role in chicken development. Therefore, this SNP can serve as a molecular marker for genetic breeding and auxiliary selection of growth-related traits, facilitating the rapid establishment of elite chicken populations with superior genetic resources. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

16 pages, 1705 KiB  
Article
Modulatory Effects of Caffeine on Imatinib Binding: A Molecular Docking Study Targeting CYP3A4
by Manuel-Ovidiu Amzoiu, Georgeta Sofia Popescu, Emilia Amzoiu, Maria Viorica Ciocîlteu, Costel Valentin Manda, Gabriela Rau, Andrei Gresita and Oana Taisescu
Life 2025, 15(8), 1247; https://doi.org/10.3390/life15081247 - 6 Aug 2025
Abstract
Caffeine is a widely consumed psychoactive compound known to influence drug metabolism and efficacy through interactions with key enzymes such as cytochrome P450 3A4 (CYP3A4). This study investigates the molecular impact of caffeine on the binding behavior of imatinib, a first-line BCR-ABL tyrosine [...] Read more.
Caffeine is a widely consumed psychoactive compound known to influence drug metabolism and efficacy through interactions with key enzymes such as cytochrome P450 3A4 (CYP3A4). This study investigates the molecular impact of caffeine on the binding behavior of imatinib, a first-line BCR-ABL tyrosine kinase inhibitor, using molecular docking simulations. Structural optimization and lipophilicity analyses were conducted using HyperChem, while docking was performed with HEX software (Version 8.0.0) against the CYP3A4 receptor (PDB ID: 1W0E). Two administration scenarios were evaluated: concurrent caffeine–imatinib complex formation and sequential administration with caffeine pre-bound to CYP3A4. The caffeine–imatinib complex exhibited a predicted increase in lipophilicity (logP = 3.09) compared to imatinib alone (logP = −1.29), which may indicate the potential for enhanced membrane permeability and tissue distribution. Docking simulations revealed stronger binding affinity of the complex to CYP3A4 (−350.53 kcal/mol) compared to individual compounds, and improved imatinib binding when CYP3A4 was pre-complexed with caffeine (−294.14 kcal/mol vs. −288.19 kcal/mol). Frontier molecular orbital analysis indicated increased reactivity of the complex (ΔE = 7.74 eV), supporting the hypothesis of altered pharmacodynamic behavior. These findings suggest that caffeine may modulate imatinib’s metabolic profile and therapeutic efficacy by enhancing receptor binding and altering drug distribution. The study underscores the importance of evaluating dietary components during drug development and therapeutic planning, particularly for agents metabolized by CYP3A4. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 1040 KiB  
Article
Alcalase Specificity by Different Substrate Proteins Under Different Conditions: The Enzyme Immobilization on Carrageenan Beads Strongly Affects the pH/Activity Curve Depending on the Substrate Protein
by Alan Portal D’Almeida, Pedro Abellanas-Perez, Luciana Rocha Barros Gonçalves, Tiago Lima de Albuquerque, Ivanildo José da Silva Junior and Roberto Fernandez-Lafuente
Catalysts 2025, 15(8), 750; https://doi.org/10.3390/catal15080750 - 5 Aug 2025
Abstract
Alcalase was immobilized–stabilized on carrageenan beads following a previously described protocol. Then, the activities of free and immobilized enzymes were compared using different protein substrates (casein, (CS), bovine serum albumin (BSA), or hemoglobin (HG)) at different pH values and temperatures. The observed activity [...] Read more.
Alcalase was immobilized–stabilized on carrageenan beads following a previously described protocol. Then, the activities of free and immobilized enzymes were compared using different protein substrates (casein, (CS), bovine serum albumin (BSA), or hemoglobin (HG)) at different pH values and temperatures. The observed activity depended on the substrate protein and enzyme formulation used. The highest enzyme activity could be observed at pHs 5, 7, or 10, depending on the substrate protein and the Alcalase formulation. The effect of the temperature at these pHs on the activity versus the different substrate proteins showed a common pattern. At low temperatures, the immobilized enzyme presented higher (mainly at acidic-neutral pH values and using BSA) or similar specific activity than the free enzyme. At temperatures near the optimal for the free enzyme, it became the most active, while at higher temperatures, the immobilized enzyme recovered the lead, although differences in the optimal temperature were not very significant. This may be explained by the lower mobility of the immobilized–stabilized enzyme. The immobilized enzyme could be much more active than the free enzyme or slightly less active, even using mild conditions, depending on the substrate protein, pH, and temperature used to determine the enzyme activity. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

15 pages, 920 KiB  
Article
Toxicity and Detoxification Enzyme Inhibition in the Two-Spotted Spider Mite (Tetranychus urticae Koch) by Artemisia annua L. Essential Oil and Its Major Monoterpenoids
by Fatemeh Nasr Azadani, Jalal Jalali Sendi, Asgar Ebadollahi, Roya Azizi and William N. Setzer
Insects 2025, 16(8), 811; https://doi.org/10.3390/insects16080811 - 5 Aug 2025
Abstract
The two-spotted spider mite, Tetranychus urticae, is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the [...] Read more.
The two-spotted spider mite, Tetranychus urticae, is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the introduction of effective and low-risk alternatives is essential. The promising pesticidal effects of essential oils (EOs) isolated from Artemisia annua have been documented in recent studies. In the present study, the acaricidal effects of an A. annua EO, along with its two dominant monoterpenoids, 1,8-cineole and camphor, were investigated against adults of T. urticae. Artemisia annua EO, 1,8-cineole, and camphor, with 24 h-LC50 values of 0.289, 0.533, and 0.64 µL/L air, respectively, had significant toxicity by fumigation against T. urticae adults. Along with lethality, A. annua EO and monoterpenoids had significant inhibitory effects on the activity of detoxifying enzymes, including α- and β-esterases, glutathione S-transferases, and cytochrome P-450 monooxygenase. According to the findings of the present study, A. annua EO and its two dominant monoterpenoids, 1,8-cineole and camphor, with significant toxicity and inhibitory effects on detoxifying enzymes, can be introduced as available, effective, and eco-friendly acaricides in the management of T. urticae. Full article
(This article belongs to the Special Issue Plant Essential Oils for the Control of Insects and Mites)
Show Figures

Figure 1

20 pages, 8344 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1 mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop