Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = P. sativum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4427 KiB  
Article
Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition
by Wanchen Zeng, Yingkai Wang, Yang Liu, Xiaomin Liu and Zhongquan Qi
Molecules 2025, 30(15), 3265; https://doi.org/10.3390/molecules30153265 - 4 Aug 2025
Abstract
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods [...] Read more.
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods to predict the anti-PD mechanism of ALC and established in vivo and in vitro PD models using 6-hydroxydopamine (6-OHDA) for experimental verification. Network pharmacological analysis indicates that apoptosis regulation and the PKA/p-CREB/BDNF signaling pathway are closely related to the anti-PD effect of ALC, and protein kinase A (PKA) and dopamine transporter (DAT) are key molecular targets. The experimental results show that ALC administration can alleviate the cytotoxicity of SH-SY5Y induced by 6-OHDA and simultaneously improve the motor dysfunction and dopaminergic neuron loss in PD mice. In addition, ALC can also activate the PKA/p-CREB/BDNF signaling pathway and increase the DAT level in brain tissue, regulate the expression of BAX and Bcl-2, and reduce neuronal apoptosis. These results indicate that ALC can exert anti-PD effects by up-regulating the PKA/p-CREB/BDNF/DAT signaling pathway and inhibiting neuronal apoptosis, providing theoretical support for the application of ALC in PD. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

16 pages, 1206 KiB  
Article
Footprint of Domestic Processing on Safety and Functional Properties of Italian Black Garlic
by Davide Addazii, Chiara Cevoli, Flavia Casciano, Federico Ferioli, Tullia Gallina Toschi, Andrea Gianotti and Lorenzo Nissen
Foods 2025, 14(15), 2595; https://doi.org/10.3390/foods14152595 - 24 Jul 2025
Viewed by 252
Abstract
Garlic (Allium sativum L.) is extensively recognized for its health-promoting effects and functional attributes, including antibacterial and anti-inflammatory activities. Additionally, the derived product of the industrial maturation process, known as black garlic, is famous for its functional properties. The novelty of the [...] Read more.
Garlic (Allium sativum L.) is extensively recognized for its health-promoting effects and functional attributes, including antibacterial and anti-inflammatory activities. Additionally, the derived product of the industrial maturation process, known as black garlic, is famous for its functional properties. The novelty of the present work is to characterize the functional properties of domestically produced black garlic. In fact, this study examines the domestic maturation of fresh garlic bulbs into black garlic of two Italian varieties, focusing on microbial growth, antimicrobial properties, prebiotic activity, volatile organic compounds, mechanical resistance, brown intensity, pH, and Aw. Results show that domestic processes are microbiologically and chemically safe and generate black garlic products with functional attributes such as prebiotic activity and the presence of health-related bioactive compounds, also developing superior technological performance. These findings enhance the understanding of black garlic culinary practices, leveraging gastronomic preparations for the development of healthier and safer food products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

21 pages, 1497 KiB  
Article
Valorization of Vineyard By-Products Through Vermicomposting: A Comparative Pilot-Scale Study with Eisenia fetida and Eisenia andrei
by Tiago Azevedo, Elisabete Nascimento-Gonçalves, Henda Lopes, Catarina Medeiros, Virgílio Falco, João R. Sousa, Ana M. Coimbra, Marta Roboredo, Paula A. Oliveira and Maria C. Morais
Agronomy 2025, 15(6), 1340; https://doi.org/10.3390/agronomy15061340 - 30 May 2025
Viewed by 570
Abstract
Vermicomposting aims to convert organic residues into valuable end products within a circular economy-based framework. Vineyards generate significant amounts of by-products, namely vine prunings (VPs), typically landfilled or incinerated, and rotten grape clusters (RGCs), which stay on the vines until removed by pruning. [...] Read more.
Vermicomposting aims to convert organic residues into valuable end products within a circular economy-based framework. Vineyards generate significant amounts of by-products, namely vine prunings (VPs), typically landfilled or incinerated, and rotten grape clusters (RGCs), which stay on the vines until removed by pruning. This pilot-scale study aimed to explore the role of two earthworm species (Eisenia fetida and Eisenia andrei) in transforming VP and RGC substrates by evaluating their physicochemical properties, phytotoxicity, and polyphenolic content before and after vermicomposting and the microbial activity at the end of the process. The substrates were vermicomposted in 2 L containers with coconut fiber (1:1 ratio) and 7.5 g of each earthworm species (clitellated and non-clitellated) per container for 100 days, with the earthworm biomass monitored every other week. Phytotoxicity was assessed using garden cress (Lepidium sativum L.) and lettuce (Lactuca sativa L.) seeds, and biological stability was assessed by microbial activity and polyphenolic content evaluation using the Folin–Ciocalteu method. The results showed that differences in the vermicompost properties were primarily substrate-dependent. The RGC-based vermicomposts exhibited higher electrical conductivity and P, K, S, and B levels, while the VP-based composts had higher C/N ratios. E. fetida produced vermicomposts with significantly higher K, Ca, and Mg contents and consistently lower phytotoxicity in germination assays with garden cress and lettuce, compared with E. andrei. Vermicomposting led to a decrease in polyphenolic content for both species. This study highlights the importance of earthworm species selection for vermicomposting vineyard residues. Further research should explore how these species perform with other residues to understand their suitability for producing high quality vermicomposts. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 4533 KiB  
Article
Meta-Analysis of Mixed Sowing Effects on Forage Yield and Water Use Efficiency in China: Influencing Factors and Optimal Conditions
by Weiqiang Guo, Yuanbo Jiang, Minhua Yin, Yi Ling, Yanxia Kang, Guangping Qi, Yaya Duan, Yanlin Ma, Yushuo Liu, Gen Ling and Kaili Pan
Plants 2025, 14(9), 1283; https://doi.org/10.3390/plants14091283 - 23 Apr 2025
Viewed by 572
Abstract
Mixed sowing of forage grass can reduce soil erosion, improving forage nutritional composition, enhancing grassland productivity, and increasing community stability. It addresses issues faced by sown pasture, including a lack of diversity in planting patterns, low resource utilization efficiency, and poor sustainability. However, [...] Read more.
Mixed sowing of forage grass can reduce soil erosion, improving forage nutritional composition, enhancing grassland productivity, and increasing community stability. It addresses issues faced by sown pasture, including a lack of diversity in planting patterns, low resource utilization efficiency, and poor sustainability. However, the effects of mixed sowing on forage yield and water use efficiency (WUE) vary depending on regional environmental conditions, management practices, and temporal factors. Based on publicly available field experiment data, this study utilized meta-analysis to quantitatively examine the effects of mixed sowing on forage yield and WUE in China. Additionally, a random forest model was employed to analyze the main influencing factors. The results showed that, compared with monoculture, mixed sowing significantly improved forage yield and WUE, with average increases of 58.3% (confidence interval: 44.3–72.3%) and 32.0% (confidence interval: 19.2–44.8%), respectively. Regarding yield, the effect of mixed sowing was the most pronounced in Shaanxi. Optimal conditions included experiments conducted during 2006–2008, annual precipitation of 200–600 mm, soil pH of 4−5, average annual temperature of 10–15 °C, altitudes below 2000 m, alfalfa (Medicago sativa) and Bromus inermis as the forage combination, two species in the mixture, a legume-to-grass species ratio of 1:1, a total seeding rate of 40–50 kg·ha−1, and mixed sowing in the same row. For WUE, significant effects were observed in Gansu under the following conditions: experiments conducted during 2018–2020, annual precipitation of 400–600 mm, an average annual temperature of 5–10 °C, a soil pH of 8–9, altitudes of 1000–2000 m, oats (Avena sativa) and peas (Pisum sativum) as the forage combination, two species in the mixture, a legume-to-grass species ratio of 1:1, a total seeding rate of <50 kg·ha−1, and mixed sowing in alternate rows. The random forest model indicated that the effects of mixed sowing on forage yield were primarily influenced by annual precipitation, average annual temperature, and experimental region. In contrast, the effects on WUE were mainly determined by forage combination, species type, and the legume-to-grass species ratio. This study provides a reference for enhancing alfalfa productivity and achieving efficient water use. Full article
Show Figures

Figure 1

27 pages, 7356 KiB  
Article
Garlic Extracts Nanoliposome as an Enhancer of Bioavailability of ABA and Thiamine Content and as an Antifungal Agent Against Fusarium oxysporum f. sp. pisi Infecting Pisum sativum
by Barbara Kutasy, Géza Hegedűs, Márta Kiniczky, József Péter Pallos, Ágnes Nagy, István Pócsi, Klaudia Pákozdi, Máté Kállai, Csaba Weingart, Katalin Andor, Bettina Kovács and Eszter Virág
Agronomy 2025, 15(4), 991; https://doi.org/10.3390/agronomy15040991 - 21 Apr 2025
Cited by 1 | Viewed by 953
Abstract
Fusarium infections in Pisum sativum L. crops present a major constraint to cultivation, leading to substantial yield losses. However, effective disease management strategies, particularly the implementation of biological control methods, offer promising approaches for mitigating infection severity and limiting pathogen spread. In P. [...] Read more.
Fusarium infections in Pisum sativum L. crops present a major constraint to cultivation, leading to substantial yield losses. However, effective disease management strategies, particularly the implementation of biological control methods, offer promising approaches for mitigating infection severity and limiting pathogen spread. In P. sativum cultivation, pathogen control is particularly challenging due to the limited penetration of pesticides into the leaves. This is attributed to the dense crystalline plate structure within the leaf cuticle, which acts as a barrier, reducing the efficacy of conventional chemical treatments. Therefore, optimizing the formulation of biopesticides and plant conditioning agents is essential to improve the absorption and bioavailability of active ingredients, ensuring more effective disease management in P. sativum cultivation. This study examined the exogenous effects of garlic extracts in different formulations, including EliceVakcina (liposomal formulation), Garlic-lipo (liposomal formulation), and Garlic-oil (oil-based formulation), which contained high concentrations of abscisic acid (ABA) at 6.3, 81, and 80.4 µg g−1, respectively. Transcriptomic profiling, including the identification of Differentially expressed genes (DEGs) and KEGG pathway analysis of EliceVakcina-treated field samples, revealed a significant upregulation of stress- and defence-related genes, as well as pathways associated with thiamine metabolism and ABA signalling. Notably, key defence genes, including pathogenesis-related (PR1, PR2, PR4, PR5) and SnRK2, were overexpressed, indicating an enhanced stress response. HPLC-DAD analytical investigations confirmed the activation of the thiamine biosynthesis pathway, demonstrating a 14.3% increase in vitamin B1 content. Furthermore, the absence of Fusarium infection in the treated small-plot field cultures suggests that the tested garlic extracts formulation functions as a promising preventive biostimulant against plant fungal diseases. Full article
Show Figures

Figure 1

10 pages, 740 KiB  
Article
In Vitro Evaluation of Three Pisum sativum L. Varieties to Partially Replace Soybean and Corn Meal in Dairy Cow Diet
by Maria Ferrara, Emanuele D’Anza, Teresa Montefusco, Piera Iommelli, Barbara Piccirillo, Alessio Ruggiero and Alessandro Vastolo
Animals 2025, 15(6), 855; https://doi.org/10.3390/ani15060855 - 17 Mar 2025
Viewed by 479
Abstract
Pea (Pisum sativum L.) seeds are valuable feed ingredients due to their high-quality protein and starch digestibility, making them a viable alternative to soybean meal and corn grain. This study evaluated the nutritional value of three commercial pea varieties (Ganster, Peps, and [...] Read more.
Pea (Pisum sativum L.) seeds are valuable feed ingredients due to their high-quality protein and starch digestibility, making them a viable alternative to soybean meal and corn grain. This study evaluated the nutritional value of three commercial pea varieties (Ganster, Peps, and Poseidon) through in vitro trials. Each variety was incorporated into an experimental diet (GNS, PES, and PNS) for dairy cows, partially replacing soybean and corn meals. These diets were compared to a control diet containing only soybean and corn meals. All diets were incubated anaerobically for 120 h with dairy cow rumen liquor. Results showed that GNS and PES diets enhanced protein degradability (p < 0.05) and fermentation kinetics (p < 0.001). Additionally, all experimental diets reduced ammonia production (p < 0.001), while the PES diet increased (p < 0.001) volatile fatty acid production. Among the tested varieties, Peps demonstrated the greatest potential by improving protein metabolism and volatile fatty acid production. These findings suggest that pea grains can be a suitable alternative in dairy cow diets, supporting efficient ruminal fermentation and nutrient utilization. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
Show Figures

Figure 1

22 pages, 1972 KiB  
Article
Ecological Pea Production in Hungary: Integrating Conservation Tillage with the Application of Rhizobium spp., Ensifer spp., Pseudomonas spp., and Bacillus spp. Bacterial Inoculants for Sustainable Farming
by Jana Marjanović, Abdulrahman Maina Zubairu, Sandor Varga, Shokhista Turdalieva, Réka Erika Döbröntey, Mária Ágnes Fodor and Apolka Ujj
Horticulturae 2025, 11(2), 213; https://doi.org/10.3390/horticulturae11020213 - 17 Feb 2025
Viewed by 875
Abstract
This study examines the impact of agroecological practices on soil quality and crop yields in small-scale farming, focusing on the combination of microbial soil inoculation, crop rotation, and conservation tillage methods. Conducted at the SZIA Agroecological Garden MATE in Gödöllő, Hungary, the experiment [...] Read more.
This study examines the impact of agroecological practices on soil quality and crop yields in small-scale farming, focusing on the combination of microbial soil inoculation, crop rotation, and conservation tillage methods. Conducted at the SZIA Agroecological Garden MATE in Gödöllő, Hungary, the experiment used 12 plots, employing various conservation tillage techniques, including soil loosening with and without microbial inoculants, as well as no-till systems with and without inoculation. Six of the plots were inoculated with beneficial bacteria to enhance nitrogen fixation, phosphorus mobility, nutrient solubilization, phytohormone production, and pathogen suppression. In 2024, peas (Pisum sativum L.) were planted following potatoes in a small-scale market-oriented crop rotation, with the continuous monitoring of crop performance and soil characteristics. This ongoing study focuses on evaluating the long-term effects of crop rotation on key agricultural parameters, aiming to optimize practices over time. Statistical analysis (one-way ANOVA) revealed no significant differences across most parameters (p > 0.05), except for total sugar content (p < 0.05), which aligns with expectations given the limited tillage prior to the study. The standard significance level of p < 0.05 was used to balance error risks, ensure adequate statistical power, and maintain consistency with established agricultural research practices. However, the study trends indicated potential long-term benefits, particularly in plots with microbial inoculants, where pea yield and pod size showed improvement compared to non-inoculated and control plots. Microbial inoculants may show long-term effects, as they gradually improve soil health, support microbial communities, and enhance nutrient cycling, which takes time to become noticeable. These findings highlight the potential advantages of combining conservation tillage with microbial inoculants, suggesting that this combination could foster enhanced soil health and productivity over time. The novel setting of this study underscores the importance of long-term monitoring to fully capture the benefits of agroecological interventions, emphasizing their role in achieving sustainable agricultural practices and improving small-scale farming outcomes. Full article
Show Figures

Figure 1

22 pages, 2514 KiB  
Article
Phytotoxicity and Metals Mobility Assessment in Mining Wastes Amended with Various Biochars
by Yassine Chafik, Marta Sena-Velez, Hugo Henaut, Mohammed Oujdi, Alex Ceriani, Sabine Carpin, Domenico Morabito and Sylvain Bourgerie
Land 2025, 14(2), 372; https://doi.org/10.3390/land14020372 - 11 Feb 2025
Cited by 1 | Viewed by 842
Abstract
Mining activities often contaminate soils with heavy metals, generating environmental and health risks. This study investigates the ecotoxicity of muddy (Mw) and sandy (Sw) mining wastes on Phaseolus vulgaris and assesses the impact of five locally sourced biochar amendments on plant growth and [...] Read more.
Mining activities often contaminate soils with heavy metals, generating environmental and health risks. This study investigates the ecotoxicity of muddy (Mw) and sandy (Sw) mining wastes on Phaseolus vulgaris and assesses the impact of five locally sourced biochar amendments on plant growth and soil pore water (SPW) properties. Most biochars improved water retention, except for argan nut shells (An) biochar, highlighting the importance of feedstock type. Sw supported better plant growth than Mw regardless of biochar addition, due to textural differences. Palm fronds (Pf) biochar significantly enhanced surface leaf area in Sw. SPW analysis revealed that biochar affected pH and electrical conductivity (EC) differently across soil types. Mw consistently increased pH, while Sw’s pH was biochar-dependent. A significant 5.1-fold EC increase was recorded in Sw amended with Pf. All biochars reduced Pb availability in Mw at planting, while Cu availability decreased in Sw at harvest. In Mw, Pb, Zn, and Cu, uptake and accumulation were unaffected by biochar, while a slight reduction was observed in Sw roots. A germination test with Lepidium sativum confirmed these findings, particularly the inhibition observed with An. This dual approach highlights the toxicity of mining soils and biochars’ potential as amendments for soil remediation programs. Full article
(This article belongs to the Special Issue Ecosystem Disturbances and Soil Properties (Second Edition))
Show Figures

Figure 1

20 pages, 1529 KiB  
Article
Cyto- and Genotoxicity of Selected Plant Extracts and Microbial Metabolites with Confirmed Activity Against Phytopathogens of Potato Seed (Solanum tuberosum L.)
by Adriana Nowak, Aleksandra Steglińska, Beata Gutarowska and Dorota Kręgiel
Molecules 2025, 30(3), 701; https://doi.org/10.3390/molecules30030701 - 5 Feb 2025
Viewed by 916
Abstract
The aim of this study was to evaluate the cytotoxicity and genotoxicity of potential biocontrol agents for use against phytopathogens of potato seed (Solanum tuberosum L.). Plant extracts from Allium sativum L., Syzygium aromaticum L. Merr. & Perry, Salvia officinalis L., and [...] Read more.
The aim of this study was to evaluate the cytotoxicity and genotoxicity of potential biocontrol agents for use against phytopathogens of potato seed (Solanum tuberosum L.). Plant extracts from Allium sativum L., Syzygium aromaticum L. Merr. & Perry, Salvia officinalis L., and Curcuma longa L., as well as metabolites of bacteria Lactiplantibacillus plantarum KB2 LAB 03 and yeast Metschnikowia pulcherrima TK1, were investigated. The chemical characteristics of the plant extracts and the metabolic profiles of the tested microorganisms were evaluated by GC-MS. An insect cell line from Spodoptera frugiperda (Sf-9) and human cervix adenocarcinoma cells (HeLa) were used to evaluate cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The single-cell electrophoresis assay was used to estimate DNA damage. The cytotoxicity and genotoxicity of the microbial metabolites depended on their chemical profiles and pH. The plant extracts induced stronger DNA damage in the Sf-9 cell line than in HeLa cells. The garlic (Allium sativum L.) extract showed the highest cytotoxicity against Sf-9 insect cells (IC50 41.6 mg/mL). The sage (Salvia officinalis L.) extract showed the highest cytotoxicity against HeLa cells (IC50 49.6 mg/mL). This study is the first to investigate not only the potential of these novel biocontrol agents for plant disease control, but also their safety for humans and biodiversity within the context of sustainable agriculture. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds in Pharmaceuticals)
Show Figures

Figure 1

20 pages, 4472 KiB  
Article
Oat and Forage Pea Mixed Sowing Improves Soil Chemical Fertility and Fresh and Dry Mass Yield in Light Saline–Alkali Land: Preliminary Results
by Changying Guo, Chengti Xu, Xiaojian Pu, Yuanyuan Zhao, Jie Wang, Yunjie Fu and Wei Wang
Agronomy 2025, 15(2), 297; https://doi.org/10.3390/agronomy15020297 - 25 Jan 2025
Cited by 4 | Viewed by 934
Abstract
Saline–alkali land is widely distributed worldwide, and poses significant challenges to agricultural productivity and ecological restoration, particularly in the Qaidam Basin. This study investigates the effects of intercropping and mixed sowing systems of oats (Avena sativa L.) and forage peas (Pisum [...] Read more.
Saline–alkali land is widely distributed worldwide, and poses significant challenges to agricultural productivity and ecological restoration, particularly in the Qaidam Basin. This study investigates the effects of intercropping and mixed sowing systems of oats (Avena sativa L.) and forage peas (Pisum sativum L.) on hay yield and soil chemical fertility in mildly saline–alkali soils of the Qaidam Basin. Through a comprehensive analysis of hay yield, soil chemical properties, and enzyme activities under different sowing methods (mixed sowing, intercropping, and monoculture) and row spacings (30, 25, 20 and 15 cm), an optimal planting pattern was identified. The 25 cm intercropping treatment produced the highest amount of fresh biomass (2242 kg hm−1), with an increase ranging from 3.17% to 70.44% compared to other treatments. Additionally, this treatment led to significant reductions in soil pH and electrical conductivity (by 3.87–8.31% and 5.13–6.05%, respectively), while enhancing organic matter content and enzyme activities. The intercropping system also demonstrated higher ammonium nitrogen and available phosphorus contents compared to the mixed sowing system. Structural equation modeling revealed that row spacing indirectly influenced both hay yield and enzyme activities, with the 25 cm row spacing proving to be the most effective. A comprehensive evaluation using the TOPSIS model further affirmed that the 25 cm intercropping system significantly enhanced hay yield, soil chemical properties, and enzyme activities, making it the most suitable planting pattern for sustainable land management in the study area. Therefore, the 25 cm intercropping model not only optimizes hay yield, but also improves soil quality and ecological functions in saline–alkali land, offering valuable insights and practical recommendations for the sustainable use of saline–alkali land in the Qaidam Basin. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

11 pages, 3187 KiB  
Study Protocol
Exploring the Biocontrol Potential of Fungus Alternaria gaisen GD-011 in the Tibetan Plateau
by Haixia Zhu, Huan Li and Yongqiang Ma
Plants 2025, 14(3), 331; https://doi.org/10.3390/plants14030331 - 23 Jan 2025
Viewed by 721
Abstract
In screening for biocontrol strains with broad-spectrum and efficient herbicidal activity, strain GD-011 isolated from naturally susceptible M. sativa (Medicago sativa L.) roots was selected as a promising candidate. The control effects of strain GD-011 on nine weeds of Qinghai farmland were [...] Read more.
In screening for biocontrol strains with broad-spectrum and efficient herbicidal activity, strain GD-011 isolated from naturally susceptible M. sativa (Medicago sativa L.) roots was selected as a promising candidate. The control effects of strain GD-011 on nine weeds of Qinghai farmland were evaluated in vitro and in vivo, and its safety to five local crops was tested. The in vivo spray inoculation test showed that strain GD-011 had a strong pathogenic effect on the weeds M. verticillata (Malva verticillata L.), E. densa (Elsholtzia densa Benth), and A. fatua (Avena fatua L.), with incidence rates of more than 80.87% and fresh weight control effects of more than 71.8%. Crop safety tests showed that the B. napus (Brassica napus L.) crop is moderately susceptible to strain GD-011, with slight reactions in H. vulgare (Hordeum vulgare L.), but strain GD-011 is safe for T. aestivum (Triticum aestivum L.), P. sativum (Pisum sativum L.), and V. faba (Vicia faba L.) Observations on the morphological characteristics combined with a sequence analysis of the ribose rDNA internal transcribed spacer (rDNA ITS), the Elongation factor (EF-1α) gene, and the antigen-related protein gene (Alt a1) identified strain GD-011 as Alternaria gaisen. Scanning electron microscopy observations showed that the mycelia of strain GD-011 invaded the leaf tissue through the stomata on the surface, with the formation of a parasitic mycelium network on the surface of the tissue, the metabolism of E. densa leaf tissues was disturbed, and leaf tissues appeared to be broken. From the perspective of its herbicidal potential, the metabolites of strain GD-011 have good control effects on most weeds and are relatively safe for crops. Full article
Show Figures

Figure 1

19 pages, 2169 KiB  
Article
Growth Promotion and Secondary Metabolites of Vegetables by Spraying Soil with Psidium guajava, Aloe vera, Allium sativum and Medicago sativa Extracts at Various Stages of Growth
by Ei Ei, Hyun Hwa Park and Yong In Kuk
Plants 2025, 14(2), 237; https://doi.org/10.3390/plants14020237 - 16 Jan 2025
Cited by 2 | Viewed by 1174
Abstract
There is a growing need for sustainable, efficient methods to promote plant growth and protect crops, with plant extracts offering natural, multi-component solutions. Based on previous observations, Psidium guajava, Aloe vera, Allium sativum and Medicago sativa were selected from 17 water [...] Read more.
There is a growing need for sustainable, efficient methods to promote plant growth and protect crops, with plant extracts offering natural, multi-component solutions. Based on previous observations, Psidium guajava, Aloe vera, Allium sativum and Medicago sativa were selected from 17 water extracts to investigate how the application times of soil sprays affect the antioxidant enzymes and secondary metabolites in fruity and leafy vegetables at different growth stages. From 1 week after sowing (WAS) to 4 WAS, all applications increased the shoot fresh weight by 42–69% in cucumbers, 40–64% in tomatoes, 46–65% in kale and 42–63% in lettuce. These applications also increased the photosynthesis, flavonoids and antioxidative enzymes (ascorbate peroxide (APOD) and guaiacol peroxidase (GPOD)), which provided the plants with a balanced supply of nutrients essential for growth. In the real world, these results show that the use of natural extracts (P. guajava and A. sativum) can be a sustainable, eco-friendly alternative to synthetic fertilizers and pesticides, helping to improve crop yields and metabolism without harming the environment. This approach could reduce the reliance on chemical inputs and promote more sustainable agricultural practices, especially in controlled environments, like greenhouses, where crops like cucumbers and kale are grown. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 4862 KiB  
Article
Modulation of Zn Ion Toxicity in Pisum sativum L. by Phycoremediation
by Zornitsa Karcheva, Zhaneta Georgieva, Svetoslav Anev, Detelina Petrova, Momchil Paunov, Miroslava Zhiponova and Ganka Chaneva
Plants 2025, 14(2), 215; https://doi.org/10.3390/plants14020215 - 14 Jan 2025
Cited by 1 | Viewed by 825
Abstract
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, Coelastrella sp. BGV (Chlorophyta) and Arthronema africanum Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn2 [...] Read more.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, Coelastrella sp. BGV (Chlorophyta) and Arthronema africanum Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn2⁺) and protect higher plants. Hydroponically grown pea (Pisum sativum L.) seedlings were subjected to ZnSO4 treatment for 7 days in either a nutrient medium (Knop) or a microalgal suspension. The effects of increasing Zn2⁺ concentrations were evaluated through solution parameters, microalgal dry weight, pea growth (height, biomass), and physiological parameters, including leaf gas exchange, chlorophyll content, and normalized difference vegetation index (NDVI). Zinc accumulation in microalgal and plant biomass was also analyzed. The results revealed that microalgae increased pH and oxygen levels in the hydroponic medium while enhancing Zn accumulation in pea roots. At low ZnSO4 concentrations (2–5 mM), microalgal suspensions stimulated pea growth and photosynthetic performance. However, higher ZnSO4 levels (10–15 mM) caused Zn accumulation, leading to nutrient deficiencies and growth suppression in microalgae, which ultimately led to physiological disturbances in peas. Coelastrella sp. BGV exhibited greater tolerance to Zn stress and provided a stronger protective effect when co-cultivated with peas, highlighting its potential for phycoremediation applications. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

30 pages, 11155 KiB  
Article
The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings
by Iwona Morkunas, Agnieszka Woźniak, Waldemar Bednarski, Adam Ostrowski, Jacek Kęsy, Paulina Glazińska, Julia Wojciechowska, Jan Bocianowski, Renata Rucińska-Sobkowiak, Van Chung Mai, Zbigniew Karolewski, Mateusz Labudda, Anielkis Batista and Philippe Jeandet
Int. J. Mol. Sci. 2024, 25(21), 11804; https://doi.org/10.3390/ijms252111804 - 2 Nov 2024
Cited by 1 | Viewed by 1959
Abstract
The main goal of this study was to investigate the effect of lead (Pb) at various concentrations, as an abiotic factor, and the cross-talk between Pb and pea aphid (Acyrthosiphon pisum (Harris)) (Hemiptera: Aphididae), as a biotic factor, on the defence responses [...] Read more.
The main goal of this study was to investigate the effect of lead (Pb) at various concentrations, as an abiotic factor, and the cross-talk between Pb and pea aphid (Acyrthosiphon pisum (Harris)) (Hemiptera: Aphididae), as a biotic factor, on the defence responses of pea seedlings (Pisum sativum L. cv. Cysterski). The analysis of growth parameters for pea seedlings demonstrated that Pb at a low concentration, i.e., 0.025–0.0625 mM Pb(NO3)2, caused a hormesis effect, i.e., stimulation of seedling growth, whereas Pb at higher concentrations, i.e., 0.01–0.325 mM Pb(NO3)2, inhibited growth, which manifested as the inhibition of length and fresh biomass. The differences in the level of the main defence-related phytohormones, such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA), and indole-3-acetic acid (IAA)—an auxin stimulating plant cell growth—depended on the dose of Pb, aphid infestation and direct contact of the stress factor with the organ. A high accumulation of soluble sugars in the organs of pea seedlings both at sublethal doses and hormetic doses at early experimental time points was observed. At 0 h and 24 h of the experiment, the hormetic doses of Pb significantly stimulated invertase activities, especially in the roots. Moreover, an increase was observed in the pisatin concentration in pea seedlings growing in the presence of different concentrations of Pb and in the case of cross-talk between Pb and A. pisum in relation to the control. Additionally, a significant induction of the expressions of isoflavone synthase (IFS) and 6α-hydroxymaackiain 3-O-methyltransferase (HMM) genes, which participate in the regulation of the pisatin biosynthesis pathway, in pea seedlings growing under the influence of sublethal 0.5 mM Pb(NO3)2 and hormetic 0.075 mM Pb(NO3)2 doses of Pb was noted. The obtained results showed that the response of P. sativum seedlings depends on the Pb dose applied, direct contact of the stress factor with the organ and the duration of contact. Full article
Show Figures

Figure 1

17 pages, 1797 KiB  
Article
Hays of Novel-Improved Legume Cultivars: Phytochemical Content and Nutritional Value
by Eleni D. Myrtsi, Dimitrios N. Vlachostergios, Christos Petsoulas, Epameinondas Evergetis, Sofia D. Koulocheri and Serkos A. Haroutounian
Plants 2024, 13(21), 3058; https://doi.org/10.3390/plants13213058 - 31 Oct 2024
Viewed by 959
Abstract
The imperative need to produce safe foodstuffs using environmentally sustainable practices has highlighted the incorporation of legumes in human and animal diets as an emerging nutritional staple. Since legumes comprise a family of plants known to display an extensive agricultural diversity with significant [...] Read more.
The imperative need to produce safe foodstuffs using environmentally sustainable practices has highlighted the incorporation of legumes in human and animal diets as an emerging nutritional staple. Since legumes comprise a family of plants known to display an extensive agricultural diversity with significant bioactivities, we report herein the exploitation outcome of the nutritional and bio-functional content of hay, derived from the post-harvest aerial parts of eight novel-improved Greek cultivars belonging to the following six taxa: Larthyrus sativus L., Medicago sativa L., Cicer arietinum L., Pisum sativum L., Vicia faba L., and Phaseolus vulgaris L. In specific, the phytochemical content of their hay extracts was screened against the presence of 37 fatty acids and 67 polyphenols using, respectively, GC-FID and LC-MS/MS instruments, while the determination of their total phenolic and tannin contents was achieved with spectrophotometric methods. In this respect, the presence of 26 different fatty acids was detected of which the acids linoleic, linolenic and palmitic were traced in all extracts in concentrations exceeding the 10 mg/g, while the oleic acid was determined as the major component of C. arietinum (77.58 mg/g), V. faba (36.11 mg/g), and L. sativus (12.89 mg/g) extracts. In addition, 30 different phenolics were traced as extracts’ components with the most abundant the molecule of isoquercetin, which was present in six extracts and isoliquiritigenin, calycosin, and chlorogenic acid which were detected in five extracts. Finally, the antioxidant properties of the extracts were evaluated by performing both DPPH and FRAP assays, which highlighted the V. faba extract as the most potent in both tests, followed by the extracts of P. sativum and P. vulgaris. Results herein are indicative of the significant advances achieved, for the improvement of investigated plant cultivars with respect to their utilization as nutritional crops, since these novel cultivars hays have been found to contain significant amounts of essential nutrients in the form of fatty acids along with bioactive ingredients in the form of polyphenols, while simultaneously they were determined as deprived of tannins that constitute essential anti-nutritional factors. Full article
Show Figures

Figure 1

Back to TopTop