Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Norilsk district

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5152 KiB  
Article
Geochemical Distribution of Platinum Metals, Gold and Silver in Intrusive Rocks of the Norilsk Region
by Ludmila Canhimbue and Irina Talovina
Minerals 2023, 13(6), 719; https://doi.org/10.3390/min13060719 - 24 May 2023
Cited by 5 | Viewed by 2140
Abstract
The Norilsk ore district is one of the world leaders in the production of platinum metals. Long-term research focused on the detection of sulfide platinum-copper-nickel ores contributed to the accumulation of a large volume of scientific material on the geology and mineralization of [...] Read more.
The Norilsk ore district is one of the world leaders in the production of platinum metals. Long-term research focused on the detection of sulfide platinum-copper-nickel ores contributed to the accumulation of a large volume of scientific material on the geology and mineralization of the Norilsk area. Despite this, the issue of the composition of the initial melt for ore-bearing intrusive complexes and its degree of enrichment with noble metals remains open. Intrusive rocks of the Norilsk region are rarely analyzed for their ratio of noble metals. However, the analysis and comparison of geochemical parameters of different types of intrusions allows us to draw important conclusions not only about the composition of the initial magmas of ore-bearing complexes, but also about the formation conditions of the intrusions. This study demonstrates the distribution of platinum metals, gold and silver in the main petrographic differentiates of the Kharaelakh, Talnakh, Vologochan intrusions and Kruglogorsk-type intrusion. The regularities and variations of the distribution of metals depend on the host rocks. There are two series of rocks in the inner structure of the ore-bearing intrusions: 1. Picritic and taxitic gabbro-dolerites enriched in PGE-Au-Ag mineralization which forms disseminated ores at intrusion bottoms (ore-bearing rocks). 2. Olivine-, olivine-bearing, olivine-free gabbro-dolerites and leucogabbro with poor sulfide mineralization at the upper part of the intrusions (ore-free rocks). There is a distinct correlation between PGE, Cu, S and to a lesser extent correlation with Ni in the first rock group, which is a characteristic of sulfide PGE-Cu-Ni deposits. In the second group, correlations are also revealed, but the correlation coefficients are lower. The main element controlling the distribution of platinum metals is copper. The taxitic gabbro-dolerites of the Talnakh intrusion are the most enriched by noble metals. According to noble metal patterns the rocks of the Kharaelakh intrusion show the highest degree of melting of the initial mantle material during the formation of parental magmas chambers. Despite some differences, the geochemical features of the studied rocks indicate the similar characteristics of the accumulation of gold, silver and platinum metals in the intrusions of the Talnakh, Kruglogorsk and Zubovsk types, which allow suggesting the close conditions for the formation of ore mineralization of these intrusions. Full article
Show Figures

Figure 1

20 pages, 11078 KiB  
Article
Geochemical Features of Potentially Ore-Bearing Mafic Intrusions at the Eastern Norilsk Region and Their Relationships with Lavas (NW Siberian Traps Province)
by Yuri Kostitsyn, Nadezhda Krivolutskaya, Alina V. Somsikova, Maria Anosova, Svetlana Demidova and Artem Konyshev
Minerals 2023, 13(2), 213; https://doi.org/10.3390/min13020213 - 1 Feb 2023
Cited by 8 | Viewed by 1881
Abstract
The problem of the world-class PGE-Cu-Ni Norilsk deposits’ origin has attracted geologists for several decades. The main goal of this study is to determine the specific features of ore-bearing intrusions in comparison with thousands of similar barren intrusions widespread within the Siberian igneous [...] Read more.
The problem of the world-class PGE-Cu-Ni Norilsk deposits’ origin has attracted geologists for several decades. The main goal of this study is to determine the specific features of ore-bearing intrusions in comparison with thousands of similar barren intrusions widespread within the Siberian igneous province, and to establish their genesis. As a result of statistical processing of previously published isotope-geochemical data and obtained by the authors, systematic differences were found in the distribution of the isotopic ratio of Nd in ore-bearing and barren intrusions, as well as in volcanic rocks at the Norilsk region. Thus, ore-bearing rocks in ten deposits (Talnakh, Kharayelakh, Norilsk 1, South-Maslovsky, North-Maslovsky, Norilsk 2, Chernogorsky, Zub-Mrksheydersky, Pyasino-Vologochansky, Imangdinsky), different in Ni and PGE reserves, show a very narrow range of Nd isotopic ratio, ԐNd(T) = 1.0 ± 1.0 (2σ, N = 139), whereas barren and volcanic rocks are characterized by a rather wide ԐNd(T) range, from −10 to +7 units (N = 256). Furthermore, ore-bearing intrusions are characterized by reduced and compact variations of the La/Lu ratio due to lower concentrations of light lanthanides. For the first time the authors studied two new intrusions penetrated by MD-48 and MD-60 boreholes drilled by Norislkgeologia LLT at the eastern part of the Mikchangda area. Their economic values are still unclear and should be estimated using geochemical methods. Both intrusions lie in the Devonian rocks, have similar thickness and mineral composition, but differ in textural and structural features, which indicate a rapid crystallization of the MD-48 intrusion. According to the contents of the major oxides, the rocks in MD-48 and MD-60 are identical, but they differ in U/Nb, La/Sm, and Gd/Yb ratios. It is important that the rocks in the MD-60 borehole are characterized by ԐNd(T) = 1.0 ± 0.6 (2σ) and fall into the range of ore-bearing intrusions, whereas the rocks in MD-48 have ԐNd(T) 2.4 ± 0.9, and, thus, are outside of ore-bearing intrusions. Therefore, ԐNd(T) values can be used as a local criterion for the estimation of economic potential of mafic intrusions, which is demonstrated for the Mikachangda area. Full article
Show Figures

Figure 1

22 pages, 5992 KiB  
Article
New Geochemical and Mineralogical Data on Rocks and Ores of the NE Flank of the Oktyabr’skoe Deposit (Norilsk Area) and a View on Their Origin
by Nadezhda Krivolutskaya, Yana Bychkova, Bronislav Gongalsky, Irina Kubrakova, Oksana Tyutyunnik, Elena Dekunova and Vladimir Taskaev
Minerals 2021, 11(1), 44; https://doi.org/10.3390/min11010044 - 31 Dec 2020
Cited by 3 | Viewed by 3780
Abstract
The Oktyabr’skoe deposit in the Norilsk ore district is the largest platinum-copper-nickel deposit in the world. It contains a huge main orebody (2.4 km3) of massive sulfide ores and some smaller sulfide bodies. Almost all publications on this deposit are devoted [...] Read more.
The Oktyabr’skoe deposit in the Norilsk ore district is the largest platinum-copper-nickel deposit in the world. It contains a huge main orebody (2.4 km3) of massive sulfide ores and some smaller sulfide bodies. Almost all publications on this deposit are devoted to the main orebody. However, to solve the problems of the deposit genesis, it is necessary to take into account the geological structure of the entire area and the composition of all orebodies. For the first time we present data on the inner structure, geochemical and mineralogical characteristics of the intrusive body, and related the disseminated and massive sulfide ores (orebody number C-5) in the northeastern flank of the deposit. The intrusion studied in the core of the borehole RG-2 consists of several horizons including the following rock varieties (from bottom to top): olivine gabbro-dolerites, taxitic gabbro-dolerites, picritic gabbro-dolerites, troctolites, olivine-free gabbro-dolerites, ferrogabbro, and leucogabbro. The intrusion shows a strong differentiated inner structure where high-Mg rocks (up to 25 wt.% MgO troctolites and picritic gabbro-dolerites) in the bottom are associated with low-Mg rocks (6–7 wt.%, gabbro-dolerites, leucogabbro, ferrogabbro) without intermediate differentiated members (8–12 wt.% MgO olivine gabbro-dolerites). Rocks are characterized by low TiO2 content (≤1 wt.%). Taxitic gabbro-dolerites, picritic gabbro-dolerites, and troctolites contain disseminated sulfide chalcopyrite-pyrrhotite mineralization (32 m thick). Cu and Ni concentrations reach up 0.74 and 0.77 wt.%, respectively. Massive ores (27 m) occur in the bottom part of the intrusion. The ores consist of pentlandite, chalcopyrite and pyrrhotite, the latter mineral dominates. Their chemical composition is stable: Cu/Ni ~1, Pd/Pt varies from 5 to 6. The C-5 orebody is similar to the C-3 orebody in terms of mineral and chemical compositions, and differ from the nearby the C-4 orebody which is characterized by a Cu/Ni ratio changing from 5 to 8. On the basis of geochemical and mineralogical data, it is assumed that orebodies C-3 and C-5 are associated with one intrusion, while the orebody number C-4 is related to another intrusive body. Thus, the deposit has a more complex structure and includes several more intrusions than is usually considered. Full article
(This article belongs to the Special Issue The Formation of Sulfide Ores in PGE-Cu-Ni Deposits)
Show Figures

Figure 1

15 pages, 4221 KiB  
Article
A Trace Element Classification Tree for Chalcopyrite from Oktyabrsk Deposit, Norilsk–Talnakh Ore District, Russia: LA-ICPMS Study
by Alexander E. Marfin, Alexei V. Ivanov, Vera D. Abramova, Tatiana N. Anziferova, Tatiana A. Radomskaya, Tamara Y. Yakich and Ksenia V. Bestemianova
Minerals 2020, 10(8), 716; https://doi.org/10.3390/min10080716 - 14 Aug 2020
Cited by 13 | Viewed by 4630
Abstract
The Oktyabrsk PGE-Cu-Ni deposit is one of the largest resources in the Norilsk–Talnakh ore district, Russia, and it is viewed as an ore giant on a global scale. It contains three types of ores: massive, disseminated and veinlet-disseminated. The two former ore types [...] Read more.
The Oktyabrsk PGE-Cu-Ni deposit is one of the largest resources in the Norilsk–Talnakh ore district, Russia, and it is viewed as an ore giant on a global scale. It contains three types of ores: massive, disseminated and veinlet-disseminated. The two former ore types were formed by a liquation process, whereas the latter was associated with fluid-induced selective metasomatic replacement of metamorphosed wall rocks. One of the major ore minerals in all ore types is chalcopyrite. In this study, we determined concentrations of trace elements in this mineral using laser ablation inductively coupled plasma mass spectrometry. It appeared that standard geochemical tools, such as plotting the data in the form of diagrams of normalized concentrations, binary and ternary plots, do not allow one to distinguish chalcopyrite from visually and genetically different ore types. In contrast, more advanced statistical methods such as cluster analysis show different groupings of elements for each ore type. Based on the element clustering, a classification tree was suggested, which allowed for the differentiation of massive, disseminated and veinlet-disseminated ore types of the Oktyabrsk deposit by Se, Te, Cd and Pb concentrations in chalcopyrite with a success rate of 86%. The general feature is that chalcopyrite of veinlet-disseminated ore is poorer in these elements compared to chalcopyrite of the two other ore types. Chalcopyrite of massive ore is poorer in Se and Te when compared to chalcopyrite of disseminated ore. Full article
(This article belongs to the Special Issue The Formation of Sulfide Ores in PGE-Cu-Ni Deposits)
Show Figures

Figure 1

42 pages, 9345 KiB  
Article
Petrographical and Geochemical Characteristics of Magmatic Rocks in the Northwestern Siberian Traps Province, Kulyumber River Valley. Part II: Rocks of the Kulyumber Site
by Nadezhda Krivolutskaya, Boris Belyatsky, Bronislav Gongalsky, Alexander Dolgal, Andrey Lapkovsky and Tamara B. Bayanova
Minerals 2020, 10(5), 415; https://doi.org/10.3390/min10050415 - 7 May 2020
Cited by 7 | Viewed by 3286
Abstract
The origin of the Siberian trap province is under discussion even though numerous models of its formation have been created over the last three decades. This situation is mainly due to lack of modern geochemical data on magmatic rocks around the province. These [...] Read more.
The origin of the Siberian trap province is under discussion even though numerous models of its formation have been created over the last three decades. This situation is mainly due to lack of modern geochemical data on magmatic rocks around the province. These data are a very important tool to reconstruct of magmatic evolution within the province in time and space and to understand a mechanism of province formation. Geochemical study has only been carried out so far for the Norilsk and Meimecha–Kotuy areas. For the first time, we have studied the geochemical and mineralogical characteristics of magmatic rocks at the Kulyumber river valley located 150 km to south from the Norilsk ore district, in the junction of the Tunguska syneclise and Norilsk–Igarka zone. It comprises three sites, i.e., Khalil, Kaya, and Kulyumber. The geochemical data on the magmatic rocks of the Khalil and Kaya sites were published earlier (Part I). This article (Part II) regards geochemical and mineralogical data on igneous rocks at the Kulyumber site. Seventeen intrusive bodies (41 samples) and six samples of sedimentary rocks were studied by X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). Isotopes analyses (Sr, Nd, Pb) were conducted for 12 samples. These data were compared with data for intrusions of the Norilsk area, the Dzhaltulsky massif, Kureyka river, and intrusions in Angara river valley published earlier. The whole list of analyses includes 102 items. Three groups of intrusive rocks were recognized: (1) Mafic rocks with elevated K2O without negative Ta-Nb and Pb-positive anomalies, with (Gd/Yb)n = 2.0 and εNd = −1.0; attributed to a new Kulyumbinsky complex; (2) subalkaline rocks with elevated SiO2,TiO2, P2O5, and K2O with small negative Ta-Nb and positive Pb anomalies and (Gd/Yb)n = 1.8, εNd = −3.8; Ergalakhsky complex; and (3) mafic rocks with strong Ta-Nb and Pb anomalies and (Gd/Yb)n = 1.2–1.4, εNd = +0.4–+2.2. The third group is rather nonhomogeneous and includes intrusions of the Norilsk, Kuryesky, Katangsky, Ogonersky, and Daldykansky complexes differing in MgO content and trace element distribution (values of Ta-Nb, Pb, and Sr anomalies). Three groups of intrusive bodies had different magma sources and different condition of crystallization reflecting their origin in rift and platform regimes. Full article
Show Figures

Figure 1

27 pages, 14458 KiB  
Article
Geochemistry and Geochronology of Southern Norilsk Intrusions, SW Siberian Traps
by Elena Sereda, Boris Belyatsky and Nadezhda Krivolutskaya
Minerals 2020, 10(2), 165; https://doi.org/10.3390/min10020165 - 13 Feb 2020
Cited by 11 | Viewed by 4667
Abstract
The Norilsk ore region is characterized by the occurrence of numerous intrusions comprising the PGE–Cu–Ni deposits. The Turumakit area, within the Southern Norilsk Trough, also contains many mineralized mafic intrusions of probably similar economic potential to the known Norilsk deposits. We study igneous [...] Read more.
The Norilsk ore region is characterized by the occurrence of numerous intrusions comprising the PGE–Cu–Ni deposits. The Turumakit area, within the Southern Norilsk Trough, also contains many mineralized mafic intrusions of probably similar economic potential to the known Norilsk deposits. We study igneous rocks from three boreholes within the Turumakit area, sampling gabbro-dolerites and trachydolerites related to the Norilsk and Ergalakh complexes, as well as an outcrop of the Daldykan gabbro-dolerite intrusion. Our petrographical, mineralogical and geochemical data, as well as the U–Pb dating of extracted baddeleyites and zircons, primarily discriminate between the sub-alkaline rocks of the main Turumakit area and the Ergalakh trachydolerites located in the Norilsk and Talnakh ore junctions. Coarser grained Turumakit trachydolerites (with pegmatite segregations) contrast finer grained Ergalakh trachydolerites by having: (1) higher TiO2 (up to 5.5 wt %) compared with 2.2 wt %–3.3 wt % in the typical Ergalakh rocks; (2) low U, lower La/Yb and La/Sm ratios (5–7), in contrast to 8–10 ppm, 2.5–2.6 and 3.0–3.3, respectively, for the Ergalakh trachydolerites; and (3) their age was determined by U–Pb methods on baddeleyite and zircon (244.8 ± 2.7 Ma), and it appears likely that the mafic rocks traditionally attributed to the Ergalakh complex within the Turumakit area are younger than the Norilsk intrusions (250 ± 1.4 Ma). These data strongly indicate an emplacement of Turumakit intrusions during the end of a ~5 Myr magmatic evolution of the Norilsk district. It is therefore proposed that the sub-alkaline rocks of the Turumakit area belong to a separate intrusive complex within the Norilsk district. Full article
Show Figures

Figure 1

Back to TopTop