Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = Newtonian heating effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5231 KiB  
Article
Exploring Ibuprofen–Menthol Eutectic Systems: Physicochemical Properties and Cytotoxicity for Pharmaceutical Applications
by Álvaro Werner, Estefanía Zuriaga, Marina Sanz, Fernando Bergua, Beatriz Giner, Carlos Lafuente and Laura Lomba
Pharmaceutics 2025, 17(8), 979; https://doi.org/10.3390/pharmaceutics17080979 - 29 Jul 2025
Viewed by 277
Abstract
Backgroun/Objectives: Recent pharmaceutical research has increasingly focused on eutectic systems to improve the formulation and delivery of active pharmaceutical ingredients (APIs). This study presents the preparation and characterization of three therapeutic eutectic systems (THEESs) based on ibuprofen and menthol at various molar ratios. [...] Read more.
Backgroun/Objectives: Recent pharmaceutical research has increasingly focused on eutectic systems to improve the formulation and delivery of active pharmaceutical ingredients (APIs). This study presents the preparation and characterization of three therapeutic eutectic systems (THEESs) based on ibuprofen and menthol at various molar ratios. Methods: The THEESs were prepared and analyzed by assessing their physicochemical properties and rheological properties were evaluated to determine flow behavior. Cytotoxicity assays were conducted on HaCaT and HepG2 cell lines to assess biocompatibility. Results: All systems formed monophasic, homogeneous, clear and viscous liquids. Key physicochemical properties, including density, refractive index, surface tension, speed of sound and isobaric heat capacity, showed a temperature-dependent, inverse proportional trend. Viscosity followed the Vogel–Fulcher–Tammann equation, and rheological analysis revealed non-Newtonian behavior, which is important for pharmaceutical processing. Notably, cytotoxicity assays revealed that Ibu-M3 and Ibu-M4 showed lower toxicity than pure compounds in HaCaT cells, while Ibu-M5 was more toxic; in HepG2 cells, only Ibu-M3 was less toxic, whereas Ibu-M4 and Ibu-M5 were more cytotoxic than the pure compounds. Conclusions: These findings highlight the potential of ibuprofen–menthol eutectic systems for safer and more effective pharmaceutical formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

22 pages, 6442 KiB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Viewed by 213
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

23 pages, 2903 KiB  
Article
Casson Fluid Saturated Non-Darcy Mixed Bio-Convective Flow over Inclined Surface with Heat Generation and Convective Effects
by Nayema Islam Nima, Mohammed Abdul Hannan, Jahangir Alam and Rifat Ara Rouf
Processes 2025, 13(7), 2295; https://doi.org/10.3390/pr13072295 - 18 Jul 2025
Viewed by 360
Abstract
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant [...] Read more.
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant in various industrial and biological contexts where traditional fluid models are insufficient. This study addresses the limitations of the standard Darcy’s law by examining non-Darcy flow, which accounts for nonlinear inertial effects in porous media. The governing equations, derived from conservation laws, are transformed into a system of no linear ordinary differential equations (ODEs) using similarity transformations. These ODEs are solved numerically using a finite differencing method that incorporates central differencing, tridiagonal matrix manipulation, and iterative procedures to ensure accuracy across various convective regimes. The reliability of this method is confirmed through validation with the MATLAB (R2024b) bvp4c scheme. The investigation analyzes the impact of key parameters (such as the Casson fluid parameter, Darcy number, Biot numbers, and heat generation) on velocity, temperature, and microorganism concentration profiles. This study reveals that the Casson fluid parameter significantly improves the velocity, concentration, and motile microorganism profiles while decreasing the temperature profile. Additionally, the Biot number is shown to considerably increase the concentration and dispersion of motile microorganisms, as well as the heat transfer rate. The findings provide valuable insights into non-Newtonian fluid behavior in porous environments, with applications in bioengineering, environmental remediation, and energy systems, such as bioreactor design and geothermal energy extraction. Full article
Show Figures

Figure 1

22 pages, 6623 KiB  
Article
Effect of Elasticity on Heat and Mass Transfer of Highly Viscous Non-Newtonian Fluids Flow in Circular Pipes
by Xuesong Wang, Xiaoyi Qiu, Xincheng Zhang, Ling Zhao and Zhenhao Xi
Polymers 2025, 17(10), 1393; https://doi.org/10.3390/polym17101393 - 19 May 2025
Viewed by 503
Abstract
The viscoelasticity of fluids have a significant impact on the process of heat and mass transfer, which directly affects the efficiency and quality, especially for highly viscous functional polymer materials. In this work, the effect of elasticity on hydrodynamic behavior of pipe flow [...] Read more.
The viscoelasticity of fluids have a significant impact on the process of heat and mass transfer, which directly affects the efficiency and quality, especially for highly viscous functional polymer materials. In this work, the effect of elasticity on hydrodynamic behavior of pipe flow for highly viscous non-Newtonian fluids was studied using viscoelastic polyolefin elastomer (POE). Two constitutive rheological equations, the Cross model and Wagner model, were applied to describe the rheological behavior of typical POE melts, which have been embedded with computational fluid dynamics (CFD) simulation of the laminar pipe flow through the user-defined function (UDF) method. The influence of both viscosity and elasticity of a polymer melt on the flow mixing and heat transfer behavior has been systematically studied. The results show that the elastic effect makes a relative larger velocity gradient in the radial direction and the thicker boundary layer near pipe wall under the same feed flow rate. That leads to the higher pressure drop and more complex residence time distribution with the longer residence time near the wall but shorter residence time in the center. Under the same conditionals, the pipeline pressure drop of the viscoelastic fluid is several times or even tens of times greater than that of the viscous fluid. When the inlet velocity increases from 0.0001 m/s to 0.01 m/s, the difference in boundary layer thickness between the viscoelastic fluid and viscous fluid increases from 3% to 12%. Similarly, the radial temperature gradient of viscoelastic fluids is also relatively high. When the inlet velocity is 0.0001 m/s, the radial temperature difference of the viscoelastic fluid is about 40% higher than that of viscous fluid. Besides that, the influence of elasticity deteriorates the mixing effect of the SK type static mixer on the laminar pipe flow of highly viscous non-Newtonian fluids. Correspondingly, the accuracy of the simulation results was verified by comparing the pressure drop data from pipeline hydrodynamic experiments. Full article
(This article belongs to the Special Issue Polymer Rheology: Progress and Prospects)
Show Figures

Figure 1

20 pages, 3662 KiB  
Article
Investigation of Fluid–Structure Interaction in Stenosed Bifurcated Arteries: Flow Dynamics and Conjugate Heat Transfer
by Mudassar Razzaq, Muhammad Adnan Anwar, Kaleem Iqbal and Marcel Gurris
Mathematics 2025, 13(10), 1637; https://doi.org/10.3390/math13101637 - 16 May 2025
Viewed by 374
Abstract
Atherosclerosis, marked by elevated plaque formation, occurs due to stenosis, which narrows the arterial walls and alters the natural flow path. Previous research has shown that the likelihood of high-rupture stenosis can be linked to temperature distribution variations in bifurcated arteries. In this [...] Read more.
Atherosclerosis, marked by elevated plaque formation, occurs due to stenosis, which narrows the arterial walls and alters the natural flow path. Previous research has shown that the likelihood of high-rupture stenosis can be linked to temperature distribution variations in bifurcated arteries. In this study, we employ a monolithic Arbitrary Lagrangian–Eulerian (ALE) finite element approach to model heat transfer in fluid–structure interactions within stenosed bifurcated arteries, considering the elasticity of arterial walls. We analyze unsteady, incompressible Newtonian blood flow in a two-dimensional laminar regime, focusing on key factors such as velocity, wall displacement, temperature effects, and the average Nusselt number. Our findings reveal that under pulsatile inflow conditions, minor temperature fluctuations occur under specific waveform flow boundary conditions. Additionally, greater arterial wall flexibility enhances heat transfer between the blood and vessel walls, with flow reflections further contributing to this effect. Lastly, we examine wall shear stress (WSS) at its minimum and maximum values, emphasizing the role of arterial elasticity in influencing these forces. Full article
(This article belongs to the Special Issue Theoretical and Computational Fluid Mechanics and Heat Transfer)
Show Figures

Figure 1

29 pages, 1122 KiB  
Review
Trends in Lubrication Research on Tapered Roller Bearings: A Review by Bearing Type and Size, Lubricant, and Study Approach
by Muhammad Ishaq Khan, Lorenzo Maccioni and Franco Concli
Lubricants 2025, 13(5), 204; https://doi.org/10.3390/lubricants13050204 - 6 May 2025
Cited by 1 | Viewed by 886
Abstract
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it [...] Read more.
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it can also negatively impact TRB performance due to the viscous and inertial effects of the lubricant. Extensive research has been conducted to examine the role of lubrication in TRB performance. Lubrication primarily influences the frictional characteristics, thermal behavior, hydraulic losses, dynamic stability, and contact mechanics of TRBs. This paper aims to collect and classify the scientific literature on TRB lubrication based on these key aspects. Specifically, it explores the scope of research on the use of Newtonian and non-Newtonian lubricants in TRBs. Furthermore, this study analyzes research based on TRB size and type, considering both oil and grease as lubricants. The findings indicate that both numerical and experimental studies have been conducted to investigate Newtonian and non-Newtonian lubricants across various TRB sizes and types. However, the results highlight that limited research has focused on non-Newtonian lubricants in TRBs with an Outer Diameter (OD) exceeding 300 mm, i.e., those typically used in wind turbines, industrial gearboxes, and railways. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

40 pages, 12138 KiB  
Article
Non-Similar Analysis of Boundary Layer Flow and Heat Transfer in Non-Newtonian Hybrid Nanofluid over a Cylinder with Viscous Dissipation Effects
by Ahmed Zeeshan, Majeed Ahmad Yousif, Muhammad Imran Khan, Muhammad Amer Latif, Syed Shahzad Ali and Pshtiwan Othman Mohammed
Energies 2025, 18(7), 1660; https://doi.org/10.3390/en18071660 - 26 Mar 2025
Cited by 2 | Viewed by 782
Abstract
Highlighting the importance of artificial intelligence and machine learning approaches in engineering and fluid mechanics problems, especially in heat transfer applications is main goal of the presented article. With the advancement in Artificial Intelligence (AI) and Machine Learning (ML) techniques, the computational efficiency [...] Read more.
Highlighting the importance of artificial intelligence and machine learning approaches in engineering and fluid mechanics problems, especially in heat transfer applications is main goal of the presented article. With the advancement in Artificial Intelligence (AI) and Machine Learning (ML) techniques, the computational efficiency and accuracy of numerical results are enhanced. The theme of the study is to use machine learning techniques to examine the thermal analysis of MHD boundary layer flow of Eyring-Powell Hybrid Nanofluid (EPHNFs) passing a horizontal cylinder embedded in a porous medium with heat source/sink and viscous dissipation effects. The considered base fluid is water (H2O) and hybrid nanoparticles titanium oxide (TiO2) and Copper oxide (CuO). The governing flow equations are nonlinear PDEs. Non-similar system of PDEs are obtained with efficient conversion variables. The dimensionless PDEs are truncated using a local non-similarity approach up to third level and numerical solution is evaluated using MATLAB built-in-function bvp4c. Artificial Neural Networks (ANNs) simulation approach is used to trained the networks to predict the solution behavior. Thermal boundary layer improves with the enhancement in the value of Rd. The accuracy and reliability of ANNs predicted solution is addressed with computation of correlation index and residual analysis. The RMSE is evaluated [0.04892, 0.0007597, 0.0007596, 0.01546, 0.008871, 0.01686] for various scenarios. It is observed that when concentration of hybrid nanoparticles increases then thermal characteristics of the Eyring-Powell Hybrid Nanofluid (EPHNFs) passing a horizontal cylinder. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

12 pages, 1283 KiB  
Article
Effects of Supplementation of Different Proteins on the Rheological Properties of Liquid Whole Eggs
by Majd Elayan, Csaba Németh, Munkhnasan Enkhbold, László Friedrich, István Dalmadi and Adrienn Varga-Tóth
Appl. Sci. 2025, 15(3), 1660; https://doi.org/10.3390/app15031660 - 6 Feb 2025
Viewed by 1365
Abstract
This study aimed to evaluate the impact of increasing total protein content on the rheological properties of liquid whole eggs. The study fills the gap between fundamental science and industrial application by exploring the potential for developing high-protein, functional egg products for health-conscious [...] Read more.
This study aimed to evaluate the impact of increasing total protein content on the rheological properties of liquid whole eggs. The study fills the gap between fundamental science and industrial application by exploring the potential for developing high-protein, functional egg products for health-conscious consumers and the food industry. Liquid whole egg samples were enriched with different percentages of egg white and whey proteins. Proteins were added either before or after heat treatment, followed by homogenization, to analyze the effects on rheological behavior. Results indicated that whey protein samples exhibit near-Newtonian behavior due to their high solubility and minimal protein interactions, while egg white protein samples, especially at higher concentrations, induce shear thinning behavior and increased viscosity due to their water-binding capacity and partial heat-induced denaturation. Flow behavior index (n) decreased by 62.7 ± 5.7% and 25.2 ± 1.8% for heat treated with 10% added egg white and whey protein samples, respectively; meanwhile, it decreased by 2.64 ± 0.06% for 10% of added egg white protein and increased by 12.0 ± 1.0% for 10% of whey protein when heat treatment was induced prior to protein additions. The findings from this study offer valuable insights for developing functional food enriched with whey and egg white proteins. Full article
Show Figures

Figure 1

32 pages, 11083 KiB  
Article
Enhancing Heat Transfer Efficiency Through Controlled Magnetic Flux in a Partially Heated Circular Cavity Using Multi-Walled Carbon Nanotube Nanofluid and an Internal Square Body
by Eid S. Alatawi
Sustainability 2024, 16(23), 10632; https://doi.org/10.3390/su162310632 - 4 Dec 2024
Cited by 2 | Viewed by 1042
Abstract
Applications including aircraft systems and electronics cooling depend on effective heat transfer. This study investigates magnetohydrodynamic (MHD) free convection and thermal radiation for heat transfer in a circular cavity filled with multi-walled carbon nanotube (MWCNT) nanofluid and containing a square obstruction. This study [...] Read more.
Applications including aircraft systems and electronics cooling depend on effective heat transfer. This study investigates magnetohydrodynamic (MHD) free convection and thermal radiation for heat transfer in a circular cavity filled with multi-walled carbon nanotube (MWCNT) nanofluid and containing a square obstruction. This study examines the impact of the internal geometry on heat transfer and fluid flow dynamics under three distinct boundary conditions, and it presents a comprehensive analysis based on a wide range of Hartmann (Ha) and Rayleigh (Ra) numbers. MWCNT nanofluid with high thermal conductivity was employed to enhance heat transfer efficiency, using a solid volume fraction (SVF) of 4% for MWCNTs and assuming Newtonian behavior for computational simplification. Magnetic properties were imparted to the nanofluid by assuming the dispersion of carbon nanotubes in a base fluid containing magnetic nanoparticles. Other walls were insulated, the bottom wall was heated, and a magnetic field (MF) with Ha ranging from 0 to 100 was applied. It was observed that raising Ra from 103 to 106 improved the Nusselt number (Nu) from 0.08 to 7.1 using the Galerkin finite element method. Ha increased from 0 to 100 and reduced Nu by 35%. Three boundary conditions for the square body showed that the heated conditions provided the largest Nu. By means of an increase in SVF from 0 to 0.04, the MWCNT nanofluid improved heat conductivity by 18%. Radiation effects with the radiation parameter Rd = 0.5 increased heat transmission by 22%. These results underline the importance of considering MHD and nanofluid characteristics in maximizing heat transfer for commercial purposes, and the approaches employed in this study contribute to a deeper understanding of the behavior of thermal systems under the influence of MHD and internal geometry. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Simulation: Application in Industries)
Show Figures

Figure 1

19 pages, 4713 KiB  
Article
Non-Newtonian Convective Heat Transfer in Annuli: Numerical Investigation on the Effects of Staggered Helical Fins
by Luca Pagliarini, Fabio Bozzoli, Rasoul Fallahzadeh and Sara Rainieri
Fluids 2024, 9(12), 272; https://doi.org/10.3390/fluids9120272 - 21 Nov 2024
Cited by 1 | Viewed by 1071
Abstract
Despite non-Newtonian fluids being involved in many industrial processes, e.g., in food and chemical industries, their thermal treatment still represents a significant challenge due to their generally high apparent viscosity and consequent low heat transfer capability. Heat transfer in heat exchangers can be [...] Read more.
Despite non-Newtonian fluids being involved in many industrial processes, e.g., in food and chemical industries, their thermal treatment still represents a significant challenge due to their generally high apparent viscosity and consequent low heat transfer capability. Heat transfer in heat exchangers can be enhanced by passive systems, such as inserts or fins, to promote boundary layer disruption and fluid recirculation. However, most of the existing configurations cannot significantly improve the heat transfer over pressure drops in deep laminar flows. The present paper presents a numerical investigation on non-Newtonian flows passing through the annulus side of a double-pipe heat exchanger with staggered helical fins. The adopted geometry was conceptualized by merging the beneficial effects of swirling flow devices and boundary layer disruption. The numerical results were first validated against analytical solutions for non-Newtonian flows in annuli under a laminar flow regime. The finned geometry was therefore numerically tested and compared with the bare annulus to quantify the resulting heat transfer augmentation. When compared with the bare annuli, the proposed novel geometry greatly enhanced the heat transfer while mitigating friction losses. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Analysis of Entropy Generation for Mass and Thermal Mixing Behaviors in Non-Newtonian Nano-Fluids of a Crossing Micromixer
by Ayache Lakhdar, Jribi Skander, Naas Toufik Tayeb, Telha Mostefa, Shakhawat Hossain and Sun Min Kim
Micromachines 2024, 15(11), 1392; https://doi.org/10.3390/mi15111392 - 17 Nov 2024
Viewed by 1473
Abstract
This work’s objective is to investigate the laminar steady flow characteristics of non-Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species transport equations have been solved numerically [...] Read more.
This work’s objective is to investigate the laminar steady flow characteristics of non-Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species transport equations have been solved numerically at low Reynolds numbers with the commercial CFD software Fluent. A procedure has been verified for non-Newtonian flow in studied geometry that is continuously heated. Secondary flows and thermal mixing performance with two distinct intake temperatures of nano-shear thinning fluids is involved. For an extensive range of Reynolds numbers (0.1 to 25), the impact of fluid characteristics and various concentrations of Al2O3 nanoparticles on thermal mixing capabilities and pressure drop were investigated. The simulation for performance enhancement was run using a power-law index (n) at intervals of different nanoparticle concentrations (0.5 to 5%). At high nano-fluid concentrations, our research findings indicate that hydrodynamic and thermal performances are considerably improved for all Reynolds numbers because of the strong chaotic flow. The mass fraction visualization shows that the suggested design has a fast thermal mixing rate that approaches 0.99%. As a consequence of the thermal and hydrodynamic processes, under the effect of chaotic advection, the creation of entropy governs the second law of thermodynamics. Thus, with the least amount of friction and thermal irreversibilities compared to other studied geometries, the TLCCM arrangement confirmed a significant enhancement in the mixing performance. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

15 pages, 4530 KiB  
Article
Numerical Assessment of the Thermal Performance of Microchannels with Slip and Viscous Dissipation Effects
by Pamela Vocale and Gian Luca Morini
Micromachines 2024, 15(11), 1359; https://doi.org/10.3390/mi15111359 - 8 Nov 2024
Cited by 1 | Viewed by 917
Abstract
Microchannels are widely used across various industries, including pharmaceuticals and biochemistry, automotive and aerospace, energy production, and many others, although they were originally developed for the computing and electronics sectors. The performance of microchannels is strongly affected by factors such as rarefaction and [...] Read more.
Microchannels are widely used across various industries, including pharmaceuticals and biochemistry, automotive and aerospace, energy production, and many others, although they were originally developed for the computing and electronics sectors. The performance of microchannels is strongly affected by factors such as rarefaction and viscous dissipation. In the present paper, a numerical analysis of the performance of microchannels featuring rectangular, trapezoidal and double-trapezoidal cross-sections in the slip flow regime is presented. The fully developed laminar forced convection of a Newtonian fluid with constant properties is considered. The non-dimensional forms of governing equations are solved by setting slip velocity and uniform heat flux as boundary conditions. Model accuracy was established using the available scientific literature. The numerical results indicated that viscous dissipation effects led to a decrease in the average Nusselt number across all the microchannels examined in this study. The degree of reduction is influenced by the cross-section, aspect ratio and Knudsen number. The highest reductions in the average Nusselt number values were observed under continuum flow conditions for all the microchannels investigated. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

19 pages, 3920 KiB  
Article
Influence of the Processing Conditions on the Rheology and Heat of Decomposition of Solution Processed Hybrid Nanocomposites and Implication to Sustainable Energy Storage
by Andekuba Andezai and Jude O. Iroh
Energies 2024, 17(16), 3930; https://doi.org/10.3390/en17163930 - 8 Aug 2024
Cited by 2 | Viewed by 1594
Abstract
This study investigates the properties of solution-processed hybrid polyimide (PI) nanocomposites containing a variety of nanofillers, including polyaniline copolymer-modified clay (PNEA), nanographene sheets (NGSs), and carbon nanotube sheets (CNT-PVDFs). Through a series of experiments, the flow behavior of poly(amic acid) (PAA) solution and [...] Read more.
This study investigates the properties of solution-processed hybrid polyimide (PI) nanocomposites containing a variety of nanofillers, including polyaniline copolymer-modified clay (PNEA), nanographene sheets (NGSs), and carbon nanotube sheets (CNT-PVDFs). Through a series of experiments, the flow behavior of poly(amic acid) (PAA) solution and PAA suspension containing polyaniline copolymer-modified clay (PNEA) is determined as a function of the shear rate, processing temperature, and polymerization time. It is shown that the neat PAA solution exhibits a complex rheological behavior ranging from shear thickening to Newtonian behavior with increasing shear rate and testing temperature. The presence of modified clay in PAA solution significantly reduced the viscosity of PAA. Differential scanning calorimetry (DSC) analysis showed that polyimide–nanographene sheet (PI NGS) nanocomposites processed at a high spindle speed (100 rpm) have lower total heat of decomposition, which is indicative of improved fire retardancy. The effect of processing temperature on the specific capacitance of a polyimide–CNT-PVDF composite containing electrodeposited polypyrrole is determined using cyclic voltammetry (CV). It is shown that the hybrid composite working electrode material processed at 90 °C produces a remarkably higher overall stored charge when compared to the composite electrode material processed at 250 °C. Consequently, the specific capacitance obtained at a scan rate of 5 mV/s for the hybrid nanocomposite processed at 90 °C is around 858 F/g after one cycle, which is about 6.3 times higher than the specific capacitance of 136 F/g produced by the hybrid nanocomposite processed at 250 °C. These findings show that the properties of the hybrid nanocomposites are remarkably influenced by the processing conditions and highlight the need for process optimization. Full article
Show Figures

Figure 1

25 pages, 3799 KiB  
Article
Fractal Numerical Investigation of Mixed Convective Prandtl-Eyring Nanofluid Flow with Space and Temperature-Dependent Heat Source
by Yasir Nawaz, Muhammad Shoaib Arif, Muavia Mansoor, Kamaleldin Abodayeh and Amani S. Baazeem
Fractal Fract. 2024, 8(5), 276; https://doi.org/10.3390/fractalfract8050276 - 6 May 2024
Cited by 4 | Viewed by 1434
Abstract
An explicit computational scheme is proposed for solving fractal time-dependent partial differential equations (PDEs). The scheme is a three-stage scheme constructed using the fractal Taylor series. The fractal time order of the scheme is three. The scheme also ensures stability. The approach is [...] Read more.
An explicit computational scheme is proposed for solving fractal time-dependent partial differential equations (PDEs). The scheme is a three-stage scheme constructed using the fractal Taylor series. The fractal time order of the scheme is three. The scheme also ensures stability. The approach is utilized to model the time-varying boundary layer flow of a non-Newtonian fluid over both stationary and oscillating surfaces, taking into account the influence of heat generation that depends on both space and temperature. The continuity equation of the considered incompressible fluid is discretized by first-order backward difference formulas, whereas the dimensionless Navier–Stokes equation, energy, and equation for nanoparticle volume fraction are discretized by the proposed scheme in fractal time. The effect of different parameters involved in the velocity, temperature, and nanoparticle volume fraction are displayed graphically. The velocity profile rises as the parameter I grows. We primarily apply this computational approach to analyze a non-Newtonian fluid’s fractal time-dependent boundary layer flow over flat and oscillatory sheets. Considering spatial and temperature-dependent heat generation is a crucial factor that introduces additional complexity to the analysis. The continuity equation for the incompressible fluid is discretized using first-order backward difference formulas. On the other hand, the dimensionless Navier–Stokes equation, energy equation, and the equation governing nanoparticle volume fraction are discretized using the proposed fractal time-dependent scheme. Full article
(This article belongs to the Special Issue Heat Transfer and Diffusion Processes in Fractal Domains)
Show Figures

Figure 1

20 pages, 4283 KiB  
Article
Numerical Modeling of Non-Isothermal Laminar Flow and Heat Transfer of Paraffinic Oil with Yield Stress in a Pipe
by Uzak Zhapbasbayev, Timur Bekibayev, Maksim Pakhomov and Gaukhar Ramazanova
Energies 2024, 17(9), 2080; https://doi.org/10.3390/en17092080 - 26 Apr 2024
Cited by 4 | Viewed by 1214
Abstract
This paper presents the results of a study on the non-isothermal laminar flow and heat transfer of oil with Newtonian and viscoplastic rheologies. Heat exchange with the surrounding environment leads to the formation of a near-wall zone of viscoplastic fluid. As the flow [...] Read more.
This paper presents the results of a study on the non-isothermal laminar flow and heat transfer of oil with Newtonian and viscoplastic rheologies. Heat exchange with the surrounding environment leads to the formation of a near-wall zone of viscoplastic fluid. As the flow proceeds, the transformation of a Newtonian fluid to a viscoplastic state occurs. The rheology of the Shvedoff–Bingham fluid as a function of temperature is represented by the effective molecular viscosity apparatus. A numerical solution to the system of equations of motion and heat transfer was obtained using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. The calculated data are obtained at Reynolds number Re from 523 to 1046, Bingham number Bn from 8.51 to 411.16, and Prandl number Pr = 45. The calculations’ novelty lies in the appearance of a “stagnation zone” in the near-wall zone and the pipe cross-section narrowing. The near-wall “stagnation zone” is along the pipe’s radius from r/R = 0.475 to r/R = 1 at Re = 523, Bn = 411.16, Pr = 45, u1 = 0.10 m/s, t1 = 25 °C, and tw = 0 °C. The influence of the heat of phase transition of paraffinic oil on the development of flow and heat transfer characteristics along the pipe length is demonstrated. Full article
(This article belongs to the Special Issue Fluid Mechanics and Turbulence)
Show Figures

Figure 1

Back to TopTop