Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (632)

Search Parameters:
Keywords = Nakhon Ratchasima

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 931 KiB  
Article
Evaluation of the Effects of Drying Techniques on the Physical and Nutritional Characteristics of Cricket (Gryllus bimaculatus) Powder for Use as Animal Feedstuff
by Warin Puangsap, Padsakorn Pootthachaya, Mutyarsih Oryza, Anusorn Cherdthong, Vibuntita Chankitisakul, Bundit Tengjaroensakul, Pheeraphong Phaengphairee and Sawitree Wongtangtintharn
Insects 2025, 16(8), 814; https://doi.org/10.3390/insects16080814 - 6 Aug 2025
Abstract
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color [...] Read more.
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color parameters (L*, a*, and b*; p < 0.05), and particle size distribution at 850 µm and 250 µm (p = 0.04 and p = 0.02, respectively). Microwave–vacuum drying produced the lightest powder with a higher proportion of coarse particles, while sun drying resulted in a darker color and greater particle retention at 850 µm. Hot-air-oven drying yielded the lowest moisture content (1.99%) and the highest gross energy (6126.43 kcal/kg), with no significant differences observed in crude protein (p = 0.61), ether extract (p = 0.08), crude fiber (p = 0.14), ash (p = 0.22), or amino acid profiles (p > 0.05). These findings indicate that all drying methods preserved the nutritional value of cricket powder, and based on the overall results, hot-air-oven drying is the most suitable method for producing high-quality cricket meal with optimal physical properties and feed value, while also providing a practical balance between drying efficiency and cost. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

30 pages, 3316 KiB  
Systematic Review
Preclinical Evidence of Curcuma longa Linn. as a Functional Food in the Management of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Rodent Studies
by Samuel Abiodun Kehinde, Zahid Naeem Qaisrani, Rinrada Pattanayaiying, Wai Phyo Lin, Bo Bo Lay, Khin Yadanar Phyo, Myat Mon San, Nurulhusna Awaeloh, Sasithon Aunsorn, Ran Kitkangplu and Sasitorn Chusri
Biomedicines 2025, 13(8), 1911; https://doi.org/10.3390/biomedicines13081911 - 5 Aug 2025
Abstract
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active [...] Read more.
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active compound curcumin, has shown therapeutic promise in preclinical studies. This systematic review and meta-analysis evaluated the effects of Curcuma longa and its derivatives on MetS-related outcomes in rodent models. Methods: A comprehensive search was conducted across six databases (PubMed, Scopus, AMED, LILACS, MDPI, and Google Scholar), yielding 47 eligible in vivo studies. Data were extracted on key metabolic, inflammatory, and oxidative stress markers and analyzed using random-effects models. Results were presented as mean differences (MD) with 95% confidence intervals (CI). Results: Meta-analysis showed that curcumin significantly reduced body weight (rats: MD = −42.10; mice: MD = −2.91), blood glucose (rats: MD = −55.59; mice: MD = −28.69), triglycerides (rats: MD = −70.17; mice: MD = −24.57), total cholesterol (rats: MD = −35.77; mice: MD = −52.61), and LDL cholesterol (rats: MD = −69.34; mice: MD = −42.93). HDL cholesterol increased significantly in rats but not in mice. Inflammatory cytokines were markedly reduced, while oxidative stress improved via decreased malondialdehyde (MDA) and elevated superoxide dismutase (SOD) and catalase (CAT) levels. Heterogeneity was moderate to high, primarily due to variations in curcumin dosage (ranging from 10 to 500 mg/kg) and treatment duration (2 to 16 weeks) across studies. Conclusions: This preclinical evidence supports Curcuma longa as a promising functional food component for preventing and managing MetS. Its multi-faceted effects warrant further clinical studies to validate its translational potential. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
Show Figures

Graphical abstract

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 189
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

28 pages, 2517 KiB  
Article
Extraction, Characterization, Biological Properties, and X-Ray Fluorescence Analysis of Functional Polysaccharides Derived from Limnospira platensis
by Wanida Pan-utai, Naraporn Phomkaivon, Sarn Settachaimongkon, Preeyanut Pongponpai and Chomphunuch Songsiriritthigul
Life 2025, 15(8), 1213; https://doi.org/10.3390/life15081213 - 31 Jul 2025
Viewed by 263
Abstract
This study explored the extraction, characterization, and biological properties of polysaccharides derived from Spirulina (Limnospira platensis), a microalga known for its rich nutritional benefits. Polysaccharides were successfully isolated and characterized using optimized biorefinery water extraction techniques to detail their structural and [...] Read more.
This study explored the extraction, characterization, and biological properties of polysaccharides derived from Spirulina (Limnospira platensis), a microalga known for its rich nutritional benefits. Polysaccharides were successfully isolated and characterized using optimized biorefinery water extraction techniques to detail their structural and functional characteristics. Results revealed notable antioxidant activity and effective α-glucosidase inhibition, indicating potential health benefits. X-ray fluorescence (XRF) analysis was conducted to assess the elemental composition, offering insights into the mineral contents of the polysaccharides. Our findings underscore the promising applications of polysaccharides from Limnospira platensis as functional ingredients in health-related fields, advocating the need for further research into their mechanisms of action and therapeutic applications. Full article
(This article belongs to the Special Issue Update on Microalgae Metabolites)
Show Figures

Figure 1

14 pages, 1590 KiB  
Article
The Effects of Low-Load Resistance Training Combined with Blood Flow Restriction or Hypoxia on Cardiovascular Response: A Randomized Controlled Trial
by Apiwan Manimmanakorn, Pudis Manimmanakorn, Lertwanlop Srisaphonphusitti, Wirakan Sumethanurakkhakun, Peeraporn Nithisup, Nattha Muangritdech and Worrawut Thuwakum
Life 2025, 15(8), 1162; https://doi.org/10.3390/life15081162 - 23 Jul 2025
Viewed by 401
Abstract
Low-load resistance training combined with vascular occlusion or hypoxia can increase muscle cross-sectional area (CSA), but the effect of such training on hormonal response and cardiovascular response is less clear. Thirty female netball athletes took part in a 5-week training of knee muscles [...] Read more.
Low-load resistance training combined with vascular occlusion or hypoxia can increase muscle cross-sectional area (CSA), but the effect of such training on hormonal response and cardiovascular response is less clear. Thirty female netball athletes took part in a 5-week training of knee muscles in which low-load resistance exercise (20% 1-RM) was combined with either an occlusion pressure (KT, n = 10), hypoxic air (HT, n = 10), or no additional stimulus (CT, n = 10). Growth hormones (GHs), cardiovascular parameters, and CSA were measured before and after the training program. Compared to CT, both HT and KT showed a substantial increase in GH release after the first training bout (pre). After 5 weeks of training (post), the release of GH was substantially reduced in all groups. Compared to CT, HT showed a substantial decrease in SP (11.7 ± 11.3%, mean ± 90% CL) over the training period. The reduction in systolic blood pressure (SP) after hypoxic training resulted in a substantial decrease in the rate-pressure product (RPP) by 15.6 ± 9.6%, compared to CT. CSA from HT and KT is likely related to the heightened release of GH found after training. The hypoxic training protocol has a greater cardiovascular benefit than similar resistance training with blood flow restriction. Full article
(This article belongs to the Special Issue New Insights into Athlete Physiology)
Show Figures

Figure 1

29 pages, 4438 KiB  
Review
Microfluidic Sensors Integrated with Smartphones for Applications in Forensics, Agriculture, and Environmental Monitoring
by Tadsakamon Loima, Jeong-Yeol Yoon and Kattika Kaarj
Micromachines 2025, 16(7), 835; https://doi.org/10.3390/mi16070835 - 21 Jul 2025
Viewed by 575
Abstract
The demand for rapid, portable, and cost-effective analytical tools has driven advances in smartphone-based microfluidic sensors. By combining microfluidic precision with the accessibility and processing power of smartphones, these devices offer real-time and on-site diagnostic capabilities. This review explores recent developments in smartphone-integrated [...] Read more.
The demand for rapid, portable, and cost-effective analytical tools has driven advances in smartphone-based microfluidic sensors. By combining microfluidic precision with the accessibility and processing power of smartphones, these devices offer real-time and on-site diagnostic capabilities. This review explores recent developments in smartphone-integrated microfluidic sensors, focusing on their design, fabrication, smartphone integration, and analytical functions with the applications in forensic science, agriculture, and environmental monitoring. In forensic science, these sensors provide fast, field-based alternatives to traditional lab methods for detecting substances like DNA, drugs, and explosives, improving investigation efficiency. In agriculture, they support precision farming by enabling on-demand analysis of soil nutrients, water quality, and plant health, enhancing crop management. In environmental monitoring, these sensors allow the timely detection of pollutants in air, water, and soil, enabling quicker responses to hazards. Their portability and user-friendliness make them particularly valuable in resource-limited settings. Overall, this review highlights the transformative potential of smartphone-based microfluidic sensors in enabling accessible, real-time diagnostics across multiple disciplines. Full article
(This article belongs to the Special Issue Microfluidic-Based Sensing)
Show Figures

Figure 1

18 pages, 4079 KiB  
Article
Enhancing Pediatric Outpatient Medical Services Through the Implementation of the Smart Well Child Center Application
by Naporn Uengarporn, Teerapat Saengthongpitag, Poonyanuch Chongjaroenjai, Atcha Pongpitakdamrong, Wutthipong Sriratthnarak, Phonpimon Rianteerasak, Kanyarat Mongkolkul, Paninun Srinuchasart, Panuwat Srichaisawat, Nicharee Mungklang, Raiwada Sanguantrakul, Pattama Tongdee, Wichulada Kiatmongkol, Boonyanulak Sihaklang, Piraporn Putrakul, Niwatchai Namvichaisirikul and Patrapon Saritshasombat
Healthcare 2025, 13(14), 1676; https://doi.org/10.3390/healthcare13141676 - 11 Jul 2025
Viewed by 379
Abstract
Background: Caregivers of children often encounter barriers when accessing pediatric healthcare services. These challenges highlight the need for digital innovations to improve accessibility and efficiency in pediatric outpatient care. Objectives: This study aimed to design, implement, and pilot evaluate the Smart Well Child [...] Read more.
Background: Caregivers of children often encounter barriers when accessing pediatric healthcare services. These challenges highlight the need for digital innovations to improve accessibility and efficiency in pediatric outpatient care. Objectives: This study aimed to design, implement, and pilot evaluate the Smart Well Child Center application in conjunction with enhancements to the Pediatric Outpatient Department. Methods: This study employs a mixed-methods research approach. The application was developed following the system development life cycle (SDLC) process, and its performance was subsequently evaluated. Additionally, its effectiveness in real-world settings was assessed through a satisfaction survey completed by 85 child caregivers. The results were summarized using the mean and standard deviation, and satisfaction levels were compared using paired t-test and repeated measures ANOVA. Results: The findings reveal that caregivers face significant challenges, including financial burdens related to travel, prolonged wait times, and difficulties accessing healthcare services. In response, the application was designed to incorporate key functionalities. Within the pre-consultation self-assessment module, caregivers can complete evaluations and receive recommendations directly through the application. Furthermore, the service procedure flowchart was restructured to seamlessly integrate these digital innovations, thereby enhancing the overall healthcare experience. The evaluation results indicate that the application achieved high performance ratings across all assessed dimensions (4.06 ± 0.77). Additionally, caregivers reported a substantial increase in satisfaction levels both immediately after implementation (4.58 ± 0.57) and one month afterward (4.59 ± 0.33). Conclusions: Given these findings, it is recommended that the hospital fully adopt the Smart Well Child Center application to improve healthcare accessibility and reduce patient wait times. Future research should assess the long-term impact of the intervention on both caregiver outcomes and healthcare professional workflow, satisfaction, and system usability, to inform broader implementation strategies. Full article
Show Figures

Figure 1

46 pages, 9390 KiB  
Article
Multi-Objective Optimization of Distributed Generation Placement in Electric Bus Transit Systems Integrated with Flash Charging Station Using Enhanced Multi-Objective Grey Wolf Optimization Technique and Consensus-Based Decision Support
by Yuttana Kongjeen, Pongsuk Pilalum, Saksit Deeum, Kittiwong Suthamno, Thongchai Klayklueng, Supapradit Marsong, Ritthichai Ratchapan, Krittidet Buayai, Kaan Kerdchuen, Wutthichai Sa-nga-ngam and Krischonme Bhumkittipich
Energies 2025, 18(14), 3638; https://doi.org/10.3390/en18143638 - 9 Jul 2025
Viewed by 486
Abstract
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, [...] Read more.
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, is developed to minimize power loss, voltage deviation, and voltage violations. The framework incorporates realistic E-bus operation characteristics, including a 31-stop, 62 km route, 600 kW pantograph flash chargers, and dynamic load profiles over a 90 min simulation period. Statistical evaluation on IEEE 33-bus and 69-bus distribution networks demonstrates that MOGWO consistently outperforms MOPSO and NSGA-II across all DG deployment scenarios. In the three-DG configuration, MOGWO achieved minimum power losses of 0.0279 MW and 0.0179 MW, and voltage deviations of 0.1313 and 0.1362 in the 33-bus and 69-bus systems, respectively, while eliminating voltage violations. The proposed method also demonstrated superior solution quality with low variance and faster convergence, requiring under 7 h of computation on average. A five-method compromise solution strategy, including TOPSIS and Lp-metric, enabled transparent and robust decision-making. The findings confirm the proposed framework’s effectiveness and scalability for enhancing distribution system performance under the demands of electric transit electrification and smart grid integration. Full article
Show Figures

Figure 1

19 pages, 5815 KiB  
Article
Development of an EV Battery Management Display with CANopen Communication
by Chanon Yanpreechaset, Natthapon Donjaroennon, Suphatchakan Nuchkum and Uthen Leeton
World Electr. Veh. J. 2025, 16(7), 375; https://doi.org/10.3390/wevj16070375 - 4 Jul 2025
Viewed by 329
Abstract
The increasing adoption of electric vehicles (EVs) presents a growing demand for efficient, real-time battery monitoring systems. Many existing Battery Management Systems (BMS) with built-in Controller Area Network (CAN) communication are often expensive or lack user-friendly interfaces for displaying data. Moreover, integrating such [...] Read more.
The increasing adoption of electric vehicles (EVs) presents a growing demand for efficient, real-time battery monitoring systems. Many existing Battery Management Systems (BMS) with built-in Controller Area Network (CAN) communication are often expensive or lack user-friendly interfaces for displaying data. Moreover, integrating such BMS units with standard Human–Machine Interface (HMI) displays remains a challenge in cost-sensitive applications. This article presents the design and development of an interface for integrating the BMS of electric vehicles with the ATD3.5-S3 display using the CANopen protocol. The system enables the real-time visualization of essential battery parameters, including voltage, current, temperature, and state of charge (SOC) percentage. The proposed system utilizes a JK BMS, an ESP32 microcontroller, and a TJA1051 CAN transceiver to convert UART data into CAN Open messages. The design emphasizes affordability, modular communication, and usability in EV applications. Testing under various load conditions confirms the system’s stability, reliability, and suitability for practical use in electric vehicles. Full article
Show Figures

Figure 1

28 pages, 1590 KiB  
Review
An Overview of Advancements in Proteomic Approaches to Enhance Livestock Production and Aquaculture
by Jakree Jitjumnong, Anukul Taweechaipaisankul, Jou-Ching Lin, Supatirada Wongchanla, Schwann Chuwatthanakhajorn, Chih-Jen Lin, Luu Tang Phuc Khang, Nguyen Vu Linh, Papungkorn Sangsawad, Nguyen Dinh-Hung, Pin-Chi Tang and Tossapol Moonmanee
Animals 2025, 15(13), 1946; https://doi.org/10.3390/ani15131946 - 2 Jul 2025
Viewed by 623
Abstract
Proteomics, the large-scale study of proteins and their functions, is an essential tool in biological research, particularly in livestock production and aquaculture. This review explores the significance of proteomic techniques and technologies in enhancing agricultural practices. Key methods, including mass spectrometry, two-dimensional gel [...] Read more.
Proteomics, the large-scale study of proteins and their functions, is an essential tool in biological research, particularly in livestock production and aquaculture. This review explores the significance of proteomic techniques and technologies in enhancing agricultural practices. Key methods, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays, enable researchers to analyze protein complexity in biological systems. In livestock production, proteomics improves animal health, growth, reproduction, and disease resistance, contributing to more efficient and sustainable practices. In aquaculture, it optimizes fish health, breeding strategies, and feed efficiency, promoting sustainable farming. Despite its potential, proteomics faces challenges, such as complexity, the need for standardized methods, and difficulties in data interpretation. However, emerging advances—including multi-omics integration, real-time monitoring, and improved understanding of protein functions under varying environmental conditions—offer promising solutions. In conclusion, proteomics is poised to transform livestock production and aquaculture, addressing key challenges in food security and sustainable agriculture. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

30 pages, 7589 KiB  
Article
Plant-Based ZnO Nanoparticles for Green Nanobiocontrol of a Highly Virulent Bacterial Leaf Blight Pathogen: Mechanistic Insights and Biocompatibility Evaluation
by Preeda Chanthapong, Duangkamol Maensiri, Paweena Rangsrisak, Thanee Jaiyan, Kanchit Rahaeng, Atcha Oraintara, Kunthaya Ratchaphonsaenwong, Jirawat Sanitchon, Piyada Theerakulpisut and Wuttipong Mahakham
Nanomaterials 2025, 15(13), 1011; https://doi.org/10.3390/nano15131011 - 30 Jun 2025
Viewed by 1182
Abstract
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a serious threat to rice cultivation. This study presents the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous leaf extract of the medicinal plant Centella asiatica [...] Read more.
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a serious threat to rice cultivation. This study presents the green synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous leaf extract of the medicinal plant Centella asiatica (L.) Urban and evaluates their potential as dual-function nanopesticides. The synthesized CA-ZnO NPs exhibited high crystallinity, a hexagonal to quasi-spherical morphology, and nanoscale dimensions (~22.5 nm), as confirmed by UV–Vis spectroscopy, XRD, FTIR, SEM, TEM, and SAED analyses. These nanoparticles demonstrated potent antibacterial activity against a highly virulent, field-derived Thai Xoo strain, with a minimum inhibitory concentration (MIC) of 8 µg/mL. Mechanistic investigations revealed substantial membrane disruption, intracellular nanoparticle penetration, and elevated reactive oxygen species (ROS) generation in treated cells. Cytotoxicity testing using human dermal fibroblasts (HDFs) revealed excellent biocompatibility, with no statistically significant reduction in cell viability at concentrations up to 500 µg/mL. In contrast, viability markedly declined at 1000 µg/mL. These findings underscore the selective antibacterial efficacy and minimal mammalian cytotoxicity of CA-ZnO NPs. Overall, CA-ZnO NPs offer a promising green nanopesticide platform that integrates potent antibacterial activity with biocompatibility, supporting future applications in sustainable crop protection and biomedical nanotechnology. Full article
(This article belongs to the Topic Nano-Enabled Innovations in Agriculture)
Show Figures

Graphical abstract

16 pages, 1084 KiB  
Article
Analysis of Vitamin D and VDR Expression in Women with Advanced Endometriosis: A Case–Control Study in Thailand
by Vitet Layanun, Woraluk Somboonporn, Pinya Aupongkaroon, Pilaiwan Kleebkaow, Nipon Chaisuriya and Naree Pluthikarmpae
Biomedicines 2025, 13(7), 1605; https://doi.org/10.3390/biomedicines13071605 - 30 Jun 2025
Viewed by 380
Abstract
Background: Vitamin D has anti-inflammatory and immunomodulatory properties that may influence the pathophysiology of endometriosis. This study investigated the association between vitamin D levels and endometriosis, and vitamin D receptor (VDR) expression in endometriotic tissue. Methods: A cross-sectional study was conducted involving 36 [...] Read more.
Background: Vitamin D has anti-inflammatory and immunomodulatory properties that may influence the pathophysiology of endometriosis. This study investigated the association between vitamin D levels and endometriosis, and vitamin D receptor (VDR) expression in endometriotic tissue. Methods: A cross-sectional study was conducted involving 36 patients with endometriosis and 72 healthy control women, matched for age and BMI. Serum 25-hydroxyvitamin D levels were measured and categorized into four statuses (normal, insufficiency, deficiency, and severe deficiency). Endometriotic tissue samples were examined for VDR expression using immunohistochemistry and qualitatively quantified using histo-scores (H-scores). Endometriosis severity was assessed using the revised criteria of the American Society for Reproductive Medicine (rASRM). Results: No statistically significant difference in vitamin D levels between the groups (20.45 vs. 21.10 ng/dL, p = 0.190) was observed, even after adjusting for residence, body sunscreen use, pregnancy, and contraceptive use. VDR expression exhibited significantly higher H-scores in endometriotic epithelial cells than in stromal cells (209.51 vs. 73.32; p < 0.001). Additionally, the VDR H-score in both cell compartments showed no significant difference according to vitamin D status. No statistically significant association was found between vitamin D levels, VDR expression, or disease severity. The odds of severe endometriosis were 2.17 (95% CI: 0.14–33.80) for vitamin D insufficiency and 4.33 (95% CI: 0.24–115.67) for deficiency compared with normal vitamin D. Conclusions: There was no statistically significant association between vitamin D levels and endometriosis and VDR. Full article
(This article belongs to the Special Issue Vitamin D: Latest Scientific Discoveries in Health and Disease)
Show Figures

Figure 1

18 pages, 9930 KiB  
Article
The Neuroprotective Potential of Seed Extract from the Indian Trumpet Tree Against Amyloid Beta-Induced Toxicity in SH-SY5Y Cells
by Nut Palachai, Benjaporn Buranrat, Parinya Noisa and Nootchanat Mairuae
Int. J. Mol. Sci. 2025, 26(13), 6288; https://doi.org/10.3390/ijms26136288 - 29 Jun 2025
Viewed by 447
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with an unclear etiology. Multiple factors, including oxidative stress and the accumulation of amyloid beta (Aβ) protein in the brain, contribute to neuronal damage. This study investigated Aβ-induced oxidative stress and cellular damage in SH-SY5Y [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with an unclear etiology. Multiple factors, including oxidative stress and the accumulation of amyloid beta (Aβ) protein in the brain, contribute to neuronal damage. This study investigated Aβ-induced oxidative stress and cellular damage in SH-SY5Y cells, as well as the neuroprotective potential of Indian trumpet tree seed extract (ITS). SH-SY5Y cells were co-treated with Aβ(25–35) (20 µM) and ITS extract at concentrations of 25 and 50 µg/mL. Cell viability, reactive oxygen species (ROS), malondialdehyde (MDA) levels, and the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed. The expression levels of B-cell lymphoma 2 (Bcl-2) and caspase-3, along with the phosphorylation levels of protein kinase B (Akt), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and cAMP response element-binding protein (CREB), were also evaluated. ITS extract at concentrations of 25 and 50 µg/mL significantly improved SH-SY5Y cell viability following Aβ-induced damage; reduced ROS and MDA levels; and enhanced CAT, SOD, and GSH-Px activities. In addition to upregulating Bcl-2 expression, ITS downregulated caspase-3 expression and increased the phosphorylation of Akt, ERK1/2, and CREB. High-performance liquid chromatography (HPLC) analysis identified baicalin, baicalein, and chrysin as major phenolic compounds in ITS extract. In conclusion, ITS extract attenuated Aβ-induced oxidative stress, enhanced antioxidant defenses and cell viability, suppressed apoptotic signaling, and activated key neuroprotective pathways. These findings provide new insights into the neuroprotective potential of ITS extract; however, further in vivo studies are needed to validate its clinical applicability. Full article
(This article belongs to the Special Issue Natural Products for Neuroprotection and Neurodegeneration)
Show Figures

Figure 1

18 pages, 2096 KiB  
Article
Effect of Dead-Cell Limosilactobacillus ingluviei on Hematological Parameters and Jejunal Transcriptome Profile in Calves During the Weaning Period
by Chao Ban, Supreena Srisaikham, Xingzhou Tian and Pipat Lounglawan
Animals 2025, 15(13), 1905; https://doi.org/10.3390/ani15131905 - 28 Jun 2025
Viewed by 355
Abstract
Weaning is challenging for dairy calves, frequently resulting in digestive issues. This highlights the importance of implementing appropriate nutritional strategies to enhance gut health and support optimal growth. Postbiotics is a promising alternative to traditional probiotics, conferring health benefits without the risks associated [...] Read more.
Weaning is challenging for dairy calves, frequently resulting in digestive issues. This highlights the importance of implementing appropriate nutritional strategies to enhance gut health and support optimal growth. Postbiotics is a promising alternative to traditional probiotics, conferring health benefits without the risks associated with live bacteria. This study aimed to investigate the effect of dietary supplementation with a postbiotic from dead-cell Limosilactobacillus ingluviei C37 (postbiotic LIC37) on blood biochemical parameters and jejunal epithelium transcriptomic profiles in calves. Fourteen Holstein bull calves were randomly allocated into two groups (n = 7). The control group (CON) received a basic diet, while the postbiotic group (DCLI) was supplemented with 1 g/d of postbiotic LIC37 for 90 days. Blood samples were collected on days 76, 83, and 90, respectively. The jejunal epithelial tissue was obtained from four randomly selected calves per group at day 90 for transcriptome analysis. The results showed that postbiotic LIC37 supplementation reduced globulin, total protein, neutrophil (Neu) levels, and neutrophil-to-lymphocyte ratio (NLR) levels in the DCLI group (p < 0.05). Transcriptomic analysis identified 76 differentially expressed genes (DEGs), with significant upregulation of genes involved in fatty acid metabolism (FABP1), intestinal barrier function (B4GALNT2), and detoxification (GSTA1), alongside downregulation of immune response regulation (FCRLA, FCRL4). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted enrichment in pathways related to glutathione metabolism, drug metabolism, and vitamin digestion, indicating that postbiotic supplementation improved detoxification, oxidative stress defense, and nutrient absorption in calves. This study provides novel insights into the molecular mechanisms underlying the benefits of postbiotic LIC37 and supports its potential as a sustainable alternative to probiotics in calf nutrition. Full article
Show Figures

Figure 1

29 pages, 9652 KiB  
Article
Curcumin Derivative CU4c Exhibits HDAC-Inhibitory and Anticancer Activities Against Human Lung Cancer Cells In Vitro and in Mouse Xenograft Models
by Narissara Namwan, Gulsiri Senawong, Chanokbhorn Phaosiri, Pakit Kumboonma, La-or Somsakeesit, Pitchakorn Sangchang and Thanaset Senawong
Pharmaceuticals 2025, 18(7), 960; https://doi.org/10.3390/ph18070960 - 26 Jun 2025
Viewed by 493
Abstract
Background/Objectives: Drug resistance and severe side effects caused by gemcitabine (Gem) and cisplatin (CDDP) are common. This study aimed to investigate the combined effects of CU4c and Gem or CDDP on lung cancer cells in vitro and in nude mouse xenograft models. [...] Read more.
Background/Objectives: Drug resistance and severe side effects caused by gemcitabine (Gem) and cisplatin (CDDP) are common. This study aimed to investigate the combined effects of CU4c and Gem or CDDP on lung cancer cells in vitro and in nude mouse xenograft models. Methods: Antiproliferative activity and drug interaction were evaluated using MTT and Chou–Talalay methods, respectively. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. The expression levels of proteins were evaluated by Western blot analysis. The HDAC-inhibitory activity of CU4c was confirmed in vitro, in silico, and in A549 cells. Results: CU4c inhibited the proliferation of A549 cells in a dose- and time-dependent manner but had little effect on the growth of noncancerous Vero cells. CU4c synergistically enhanced the antiproliferative activities of CDDP (at 24 h) and Gem (at 48 and 72 h) against A549 cells. Combined CU4c and CDDP notably inhibited A549 proliferation by triggering cell cycle arrest at S and G2/M phases at 24 h with elevated levels of p21 and p53 proteins. Combined CU4c and Gem induced cell cycle arrest at both the S and G2/M phases at 48 h via upregulating the expression of the p21 protein. CU4c enhanced the apoptotic effects of CDDP and Gem by increasing the Bax/Bcl-2 ratio, pERK1/2, and Ac-H3 levels. Combined CU4c and Gem significantly reduced tumor growth while minimizing visceral organ damage in animal study. Conclusions: These results suggest that CU4c enhances the anticancer activity of CDDP and Gem and reduces the toxicity of Gem in animal studies. Full article
(This article belongs to the Special Issue Novel Anticancer Drug Development and Toxicity Reduction Strategies)
Show Figures

Figure 1

Back to TopTop