Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = NSM-FRP strengthening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 6085 KiB  
Review
Strengthening Reinforced Concrete Members Using FRP—Evaluating Fire Performance, Challenges, and Future Research Directions: A State-of-the-Art Review
by Mahmood Haris, Ergang Xiong, Wanyang Gao, Mabor Achol Samuel, Najam Us Sahar and Anwar Saleem
Polymers 2025, 17(1), 13; https://doi.org/10.3390/polym17010013 - 25 Dec 2024
Cited by 2 | Viewed by 2033
Abstract
Fiber-reinforced polymer (FRP) composites are increasingly used in civil engineering for strengthening and repairing existing reinforced concrete (RC) members using externally bonded reinforcement (EBR) and near-surface mounted (NSM) methods. However, the fire performance of FRP-strengthened RC members has been an important issue that [...] Read more.
Fiber-reinforced polymer (FRP) composites are increasingly used in civil engineering for strengthening and repairing existing reinforced concrete (RC) members using externally bonded reinforcement (EBR) and near-surface mounted (NSM) methods. However, the fire performance of FRP-strengthened RC members has been an important issue that should be properly considered in the fire safety design process since FRP composites exhibit significant performance degradation at elevated temperatures. This paper aims to review studies on the fire performance of FRP-strengthened RC members based on the existing research results presented in the literature to provide a comprehensive understanding of key factors influencing the structural behavior of FRP-strengthened RC members under fire conditions. It provides an overview of FRP composite material properties, such as their mechanical and thermal behavior and bond characteristics between FRP-to-concrete interfaces at elevated temperatures. Additionally, this paper reviews experimental and numerical research conducted on FRP-strengthened RC members, examining load-carrying capacities and fire endurance ratings. Finally, this review will provide existing fire resistance design methods as well as simple design methods for temperature prediction. Full article
Show Figures

Figure 1

27 pages, 7539 KiB  
Article
Data-Driven Interpretable Machine Learning Prediction Method for the Bond Strength of Near-Surface-Mounted FRP-Concrete
by Fawen Gao, Jiwu Yang, Yanbao Huang and Tingbin Liu
Buildings 2024, 14(9), 2650; https://doi.org/10.3390/buildings14092650 - 26 Aug 2024
Cited by 1 | Viewed by 1456
Abstract
The Near-Surface-Mounted (NSM) technique for Fiber-Reinforced Polymer (FRP) strengthening is widely applied in the seismic retrofitting of concrete structures. The key aspect of the NSM technique lies in the adhesive performance between the FRP, adhesive layer, and concrete. In order to accurately predict [...] Read more.
The Near-Surface-Mounted (NSM) technique for Fiber-Reinforced Polymer (FRP) strengthening is widely applied in the seismic retrofitting of concrete structures. The key aspect of the NSM technique lies in the adhesive performance between the FRP, adhesive layer, and concrete. In order to accurately predict the bond strength of embedded reinforced NSM FRP–concrete, this study constructs the relationship between the influencing factors of bonding performance and bond strength based on four machine learning (ML) algorithms: Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB). A unified and interpretable prediction method for FRP–concrete interface bond strength based on SHAP values and ML algorithms is proposed. The results indicate that the ML models exhibit good predictive performance, with the R2 of the test set ranging from 0.8190 to 0.9621, showing higher accuracy than empirical calculation formulas. Among them, the RF algorithm demonstrates the highest overall accuracy and optimal performance. Additionally, the SHAP (Shapley additional explanations) method quantitatively confirms that the width of the FRP strip has the most significant impact on bond strength. The newly developed hybrid ML model has the potential to become a new choice for accurately assessing the bond strength of NSM FRP strengthening technology. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 9700 KiB  
Article
An Experimental Study Incorporating Carbon Fiber Composite Bars and Wraps for Concrete Performance and Failure Insight
by Ali Akbarpour, Jeffery Volz and Shreya Vemuganti
J. Compos. Sci. 2024, 8(5), 174; https://doi.org/10.3390/jcs8050174 - 9 May 2024
Cited by 20 | Viewed by 2018
Abstract
Corrosion of conventional steel reinforcement is responsible for numerous structurally deficient bridges, which is a multi-billion-dollar challenge that creates a vicious cycle of maintenance, repair, and replacement of infrastructure. Repair of existing structures with fiber-reinforced polymer (FRP) has become widespread due to multiple [...] Read more.
Corrosion of conventional steel reinforcement is responsible for numerous structurally deficient bridges, which is a multi-billion-dollar challenge that creates a vicious cycle of maintenance, repair, and replacement of infrastructure. Repair of existing structures with fiber-reinforced polymer (FRP) has become widespread due to multiple advantages. Carbon FRP’s superior tensile strength and stiffness make it particularly effective in shear and flexural strengthening of reinforced concrete (RC) beams. This experimental study incorporates carbon fiber polymer composite bars and wraps to study and report on the flexural behavior of RC beams. By employing a combination of CFRP bar and wrap for strengthening RC beams, this study observed an approximate 95% improvement in flexural load capacity relative to control RC beams without strengthening. This substantial enhancement highlights the effectiveness of integrating CFRP in structural applications. Nevertheless, the key observation is the failure mode due to this combination providing significant insights into the changes facilitated by this combination approach. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

25 pages, 10396 KiB  
Article
Seismic Response of RC Beam-Column Joints Strengthened with FRP ROPES, Using 3D Finite Element: Verification with Real Scale Tests
by Emmanouil Golias, Paul Touratzidis and Chris G. Karayannis
CivilEng 2024, 5(2), 395-419; https://doi.org/10.3390/civileng5020020 - 30 Apr 2024
Cited by 3 | Viewed by 1992
Abstract
A 3D-finite element analysis within the numerical program ABAQUS is adopted in order to simulate the seismic behavior of reinforced concrete beam-column joints and beam-column joints strengthened with CFRP ropes. The suitability of the adopted approach is investigated herein. For this purpose, experimental [...] Read more.
A 3D-finite element analysis within the numerical program ABAQUS is adopted in order to simulate the seismic behavior of reinforced concrete beam-column joints and beam-column joints strengthened with CFRP ropes. The suitability of the adopted approach is investigated herein. For this purpose, experimental and numerical cyclic tests were performed. The experiments include four reinforced concrete (RC) joints with the same ratio of shear closed-stirrup reinforcement and two different volumetric ratios of longitudinal steel reinforcing bars. Two joints were tested as-built, and the other two were strengthened with CFRP ropes. The ropes were applied as Near Surface Mounted (NSM) reinforcement, forming an X-shape around the joint body and further as flexural reinforcement at the top and bottom of the beam. The purpose of the externally mounted CFRP ropes is to allow the development of higher values of concrete principal stresses inside the joint core, compared with the specimens without ropes, and also to reduce the developing shear deformation in the joint. From the results, it is concluded that X-shaped ropes reduced the shear deformation in the joint body remarkably, especially in high drifts. Further, as a result of the comparisons between the yielded outcome from the attempted nonlinear analysis and the observed response from the tests, it is deduced that the adopted method sufficiently describes the whole behavior of the RC beam-column connections. In particular, comparisons between experimental and numerical results of principal stresses developing in the joint body of all examined specimens, along with similar comparisons of force displacement envelopes and shear deformations of the joint body, confirmed the adequacy of the applied finite element approach for the investigation of the use of CFRP-ropes as an efficient and easy-to-apply strengthening technique. The findings also reveal that the connections that have been strengthened with the FRP ropes demonstrated improved performance, and the crack system preserved its load capacity during the reversal loading tests. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

17 pages, 9791 KiB  
Article
Fatigue Life Prediction Model of FRP–Concrete Interface Based on Gene Expression Programming
by Zhimei Zhang and Yinglong Huo
Materials 2024, 17(3), 690; https://doi.org/10.3390/ma17030690 - 31 Jan 2024
Cited by 2 | Viewed by 1191
Abstract
Under fatigue loading, the interfacial fatigue life of fiber-reinforced polymer(FRP)–concrete is an important index for the analysis of the fatigue performance of reinforced concrete beams strengthened with FRP materials and the evaluation of the reinforcement effect. To solve the problems of the inconsistent [...] Read more.
Under fatigue loading, the interfacial fatigue life of fiber-reinforced polymer(FRP)–concrete is an important index for the analysis of the fatigue performance of reinforced concrete beams strengthened with FRP materials and the evaluation of the reinforcement effect. To solve the problems of the inconsistent and limited accuracy of existing fatigue life prediction models, gene expression programming (GEP) was used to study the interfacial fatigue life of FRP–concrete. Firstly, 219 sets of interfacial fatigue test data were collected, which included two kinds of reinforcement methods, namely, externally bonded (EB) reinforcement and near-surface-mounted (NSM) reinforcement; secondly, Pearson correlation analysis was used to determine the key factors affecting the fatigue life, and then GEP was used to explore the influence of different input forms on the prediction accuracy of the model. Fatigue life calculation formulas applicable to the two kinds of reinforcement methods, i.e., EB and NSM, were established, and a specific calculation formula was established. The model was subjected to parameter sensitivity analysis and variable importance analysis and was found to reflect the intrinsic relationship between the fatigue life and various factors. Finally, the GEP model was compared with the models proposed by other researchers. Five statistical indices, such as the coefficient of determination and the average absolute error, were selected to assess the model, and the results show that the GEP model has higher prediction accuracy than other models, with a coefficient of determination of 0.819, and indicators such as the average absolute error are also lower than those of the rest of the models. Full article
Show Figures

Figure 1

18 pages, 3472 KiB  
Article
Universal Bond Models of FRP Reinforcements Externally Bonded and Near-Surface Mounted to RC Elements in Bending
by Justas Slaitas
Materials 2024, 17(2), 493; https://doi.org/10.3390/ma17020493 - 19 Jan 2024
Cited by 3 | Viewed by 1275
Abstract
The use of fibre-reinforced polymer materials (FRPs) for the retrofitting of reinforced concrete (RC) structures has become very popular. However, the main concern for the exploitation of FRPs is their premature debonding failure modes. This paper presents two different universal models for calculating [...] Read more.
The use of fibre-reinforced polymer materials (FRPs) for the retrofitting of reinforced concrete (RC) structures has become very popular. However, the main concern for the exploitation of FRPs is their premature debonding failure modes. This paper presents two different universal models for calculating flexed RC elements strengthened with externally bonded and near-surface mounted FRP reinforcements, which were derived by coupling principles of the fracture mechanics of solids and generally accepted assumptions. The first model allows a complete analysis of the behaviour, development, and propagation of rupture of the joint. The main advantages of the proposed model, compared to existing ones, are that it does not require additional bond shear tests to identify missing factors, and it is versatile and suitable for both externally bonded reinforcements (EBR) and near surface mounted (NSM) strengthening techniques. In addition, the concrete–FRP connection is divided into zones and the current phase and length of each zone are determined, allowing for more detailed analysis of the connection at different load stages. The proposed computational model and its derivation focus on the performance of the joint between the two cracks and the distribution of the shear stresses in that joint. The second one requires fewer computations and can be fully exploited when the joint is treated as a unit, without division. The results of the calculations have been validated using the experimental database of 77 RC beams and strengthened with externally bonded and near-surface mounted carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) sheets, plates, strips, and bars taken from 13 different studies. Both the prestress force and the initial stress state before strengthening were evaluated. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

31 pages, 15636 KiB  
Article
Behavior of FRP-Retrofitted Wall-like RC Columns after Preloading to Simulate In-Service Conditions
by Hussein Elsanadedy, Husain Abbas, Tarek Almusallam and Yousef Al-Salloum
Buildings 2024, 14(1), 61; https://doi.org/10.3390/buildings14010061 - 24 Dec 2023
Viewed by 1715
Abstract
In the Middle East, wall-like reinforced concrete (RC) columns are a common choice in multistory buildings. Sometimes, these columns need axial retrofitting for increased load capacity. In practice, unstrengthened columns bear their load, and if retrofitting is necessary, the load is released before [...] Read more.
In the Middle East, wall-like reinforced concrete (RC) columns are a common choice in multistory buildings. Sometimes, these columns need axial retrofitting for increased load capacity. In practice, unstrengthened columns bear their load, and if retrofitting is necessary, the load is released before the upgrade—unlike in past research studies that overlooked this real-world scenario. This study aimed to investigate the response of preloaded wall-like RC columns after being retrofitted using different configurations. In the experimental campaign, two half-scale columns were cast and axially loaded to 80% of their capacity, and the load was then totally released. After that, these specimens were strengthened with two different schemes, and hence, they were concentrically loaded until failure. In both schemes, the section shape was not modified. The first scheme comprised wrapping carbon FRP (fiber-reinforced polymer) sheets together with near-surface mounted (NSM) steel rebars. However, the second technique was composed of wrapping glass FRP (GFRP) sheets together with NSM steel rebars and bolted steel plates. The second scheme was found to be superior to the first one due to the extra confinement provided by the bolted steel plates. This scheme improved the peak load, stiffness, and dissipated energy by 115%, 75%, and 524%, respectively. Other than the testing campaign, nonlinear numerical modeling was undertaken to examine the behavior of tested specimens. The models were utilized to conduct a parametric study, exploring the influence of the percentage of preloading and the amount of load release on the response of columns strengthened with the second scheme. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 11268 KiB  
Article
Numerical Analysis of an Innovative Double-Strap Joint for the Splicing of Near-Surface Mounted Fiber-Reinforced Polymer Bars for Reinforced Concrete Beam Strengthening
by Slobodan Ranković, Andrija Zorić, Todor Vacev and Žarko Petrović
Appl. Sci. 2023, 13(22), 12387; https://doi.org/10.3390/app132212387 - 16 Nov 2023
Cited by 1 | Viewed by 1163
Abstract
The issue of the cut-off splicing of an additional fiber-reinforced polymer (FRP) bar in the near-surface mounted (NSM) technique for reinforced concrete (RC) beam strengthening exposed dominantly to bending is insufficiently investigated. A possible solution of this issue is a new proposed technique: [...] Read more.
The issue of the cut-off splicing of an additional fiber-reinforced polymer (FRP) bar in the near-surface mounted (NSM) technique for reinforced concrete (RC) beam strengthening exposed dominantly to bending is insufficiently investigated. A possible solution of this issue is a new proposed technique: a double-strap joint. It implies the widening of the groove at the cut-off location and the symmetrical installing of additional supplements of FRP reinforcement. In this research, beam strength has been determined for the following cases: additional NSM FRP reinforcement without a cut-off, with a cut-off, and without overlapping, and with different lengths of splice overlapping. A nonlinear analysis based on the finite element method (FEM) has been applied. The length of the cut-off splice of the additional FRP reinforcement with glass fibers (GFRP) was 20Ø, 40Ø, and 60Ø. The validation of the numerical model and a comparison of the results were conducted by using the authors’ experiments. It has been shown that, in the case of a cut-off of NSM GFRP bars, a significant loss in strengthening efficiency occurs, and that, with an increase in the overlapping length, this loss decreases. An overlapping length of 60Ø provides full strengthening. An efficiency assessment was carried out via the use of a parametric study, varying the FRP bar material type and its diameter for a constant splicing length. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 7092 KiB  
Article
Analysis of FRP-Strengthened Reinforced Concrete Beams Using Electromechanical Impedance Technique and Digital Image Correlation System
by Ricardo Perera, María Consuelo Huerta, Marta Baena and Cristina Barris
Sensors 2023, 23(21), 8933; https://doi.org/10.3390/s23218933 - 2 Nov 2023
Cited by 14 | Viewed by 2114
Abstract
Fiber-reinforced polymer (FRP) strengthening systems have been considered an effective technique to retrofit concrete structures, and their use nowadays is more and more extensive. Externally bonded reinforcement (EBR) and near-surface mounted (NSM) technologies are the two most widely recognized and applied FRP strengthening [...] Read more.
Fiber-reinforced polymer (FRP) strengthening systems have been considered an effective technique to retrofit concrete structures, and their use nowadays is more and more extensive. Externally bonded reinforcement (EBR) and near-surface mounted (NSM) technologies are the two most widely recognized and applied FRP strengthening methods for enhancing structural performance worldwide. However, one of the main disadvantages of both approaches is a possible brittle failure mode provided by a sudden debonding of the FRP. Therefore, methodologies able to monitor the long-term efficiency of this kind of strengthening constitute a challenge to be overcome. In this work, two reinforced concrete (RC) specimens strengthened with FRP and subjected to increasing load tests were monitored. One specimen was strengthened using the EBR method, while for the other, the NSM technique was used. The multiple cracks emanating in both specimens in the static tests, as possible origins of a future debonding failure, were monitored using a piezoelectric (PZT)-transducer-based electromechanical impedance (EMI) technique and a digital image correlation (DIC) system. Clustering approaches based on impedance measurements of the healthy and damaged states of the specimens allowed us to suspect the occurrence of cracks and their growth. The strain profiles captured in the images of the DIC system allowed us to depict surface hair-line cracks and their propagation. The combined implementation of the two techniques to look for correlations during incremental bending tests was addressed in this study as a means of improving the prediction of early cracks and potentially anticipating the complete failure of the strengthened specimens. Full article
Show Figures

Figure 1

23 pages, 7740 KiB  
Article
Detection in RC Beams Damaged and Strengthened with NSM CFRP/GFRP Rods by Free Vibration Monitoring
by Elisa Bettucci, Roberto Capozucca, Erica Magagnini and Maria Vittoria Vecchietti
Buildings 2023, 13(4), 979; https://doi.org/10.3390/buildings13040979 - 7 Apr 2023
Cited by 3 | Viewed by 1860
Abstract
This paper intends to deepen the topic of damage detection based on non-destructive tests (NDT) for the assessment of the dynamic behavior of RC beams damaged and strengthened both with near-surface mounted (NSM) Carbon and GlassFRP rods. The NSM strengthening with fiber-reinforced polymer [...] Read more.
This paper intends to deepen the topic of damage detection based on non-destructive tests (NDT) for the assessment of the dynamic behavior of RC beams damaged and strengthened both with near-surface mounted (NSM) Carbon and GlassFRP rods. The NSM strengthening with fiber-reinforced polymer (FRP) rods of damaged reinforced concrete (RC) beams is a viable alternative to the traditional strengthening with externally bonded (EB) FRP strips or sheets. In this paper, static tests were foreseen on RC beams to create cracking, and successively, the RC beams strengthened with NSM CFRP and GFRP rods were still investigated using free vibration tests at different loading levels until failure. The purpose of this research is to compare the response of two different types of strengthening of damaged RC beams based on the strength of CFRP and GFRP rods until failure modes. At different steps of loading, the behavior of beams under experimental vibrations has been monitored by frequency response function (FRF) diagrams. Finally, a discussion of the results is presented. Full article
Show Figures

Figure 1

23 pages, 3577 KiB  
Review
Techniques Used for Bond Strengthening of Sub-Standard Splices in Concrete: A Review Study
by Sabry Fayed, Walid Mansour, Taher A. Tawfik, Peter Sabol and Dušan Katunský
Processes 2023, 11(4), 1119; https://doi.org/10.3390/pr11041119 - 5 Apr 2023
Cited by 6 | Viewed by 6977
Abstract
Bar splicing is considered an essential part of the construction process of reinforced concrete (RC) due to the ease of installation in construction, transportation constraints, and restricted length of reinforcing bars. Splices serve the primary role of joining reinforcement bars in standard RC [...] Read more.
Bar splicing is considered an essential part of the construction process of reinforced concrete (RC) due to the ease of installation in construction, transportation constraints, and restricted length of reinforcing bars. Splices serve the primary role of joining reinforcement bars in standard RC elements such as columns, walls, beams, slabs, and joints. Bond behavior between the bars and the concrete is one of the fundamental qualities required for appropriate RC structure design and analysis, as it affects serviceability and ultimate limit states. The most common failure found in lap splice locations is debonding, which occurs at the splice region and insufficient lapped length is considered as the primary cause because of design or construction mistakes, design by outmoded code, and natural catastrophes. As a result, strengthening existing substandard splices in RC structures is critical. The purpose of this research is to analyze and summarize experimental strengthening solutions for inadequate splices. The most common methods are confining spirals, confining with internal or external steel stirrups or carbon fiber reinforced polymer (CFRP), concrete jacketing, fiber reinforced polymers (FRP), post-tensioning prestressed RC, external confining with CFRP, near surface mounted (NSM) techniques, ultra-high-performance concrete (UHPC), fiber reinforced concrete (FRC) and combinations of two methods. Each method of strengthening is evaluated based on its performance, benefits, drawbacks, application-specific elements, and variables influencing the design and scope of applicability. A comparison of the key methodologies was also carried out. The most recent studies and recommendations for improving inadequate lapped splices are provided. Full article
(This article belongs to the Special Issue Mechanical Behavior and Degradation Processes of Advanced Materials)
Show Figures

Figure 1

18 pages, 18659 KiB  
Article
Seismic Tests of Full Scale Reinforced Concrete T Joints with Light External Continuous Composite Rope Strengthening—Joint Deterioration and Failure Assessment
by Martha Karabini, Theodoros Rousakis, Emmanouil Golias and Chris Karayannis
Materials 2023, 16(7), 2718; https://doi.org/10.3390/ma16072718 - 29 Mar 2023
Cited by 9 | Viewed by 2055
Abstract
Beam–column connections (joints) are one of the most critical elements which govern the overall seismic behavior of reinforced concrete (RC) structures. Especially in buildings designed according to previous generation codes, joints are often encountered with insufficient transverse reinforcement detailing, or even with no [...] Read more.
Beam–column connections (joints) are one of the most critical elements which govern the overall seismic behavior of reinforced concrete (RC) structures. Especially in buildings designed according to previous generation codes, joints are often encountered with insufficient transverse reinforcement detailing, or even with no stirrups, leading to brittle failure. Therefore, externally bonded composite materials may be applied, due to the ease of application, low specific weight and corrosion-free properties. The present work assesses the seismic performance of insufficiently reinforced large-scale T beam–column connections with large and heavily reinforced beams. The joints receive externally bonded NSM X-shaped composite ropes with improved versatile continuous detailing. The columns are subjected to low normalized axial load, while the free end of the beam is subjected to transverse displacement reversals. Different failure criteria are investigated, based on the beam free-end transverse load, as well as on the joint region shear deformations, to critically assess the structural performance of the subsystem. The experimental investigation concludes that cyclic loading has a detrimental effect on the performance of the joint. Absence of an internal steel stirrup leads to earlier deterioration of the joint. The unstrengthened specimens disintegrate at 2% drift, which corresponds to 34 mm beam-end displacement, and shear deformation of the joint equal to 30 × 10−4 rad. The composite strengthening, increases the structural performance of the joint up to 4% drift which corresponds to 68 mm of beam-end displacement and shear deformation of the joint equal to 10 × 10−4 rad. The investigated cases of inadequate existing transverse reinforcement in the joint and light external FRP strengthening provide a unique insight into the required retrofits to achieve different levels of post-yielding displacement ductility under seismic loading at 2%, 3% and 4% drift. It allows for future analytical refinements toward reliable redesign analytical models. Full article
Show Figures

Figure 1

17 pages, 3936 KiB  
Article
Flexural Performance and End Debonding Prediction of NSM Carbon FRP-Strengthened Reinforced Concrete Beams under Different Service Temperatures
by Marta Baena, Younes Jahani, Lluís Torres, Cristina Barris and Ricardo Perera
Polymers 2023, 15(4), 851; https://doi.org/10.3390/polym15040851 - 8 Feb 2023
Cited by 11 | Viewed by 2425
Abstract
This paper aims to evaluate the influence of relatively high service temperatures (near or beyond the glass transition temperature (Tg) of epoxy adhesive) on the flexural performance and end debonding phenomenon in near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened, reinforced [...] Read more.
This paper aims to evaluate the influence of relatively high service temperatures (near or beyond the glass transition temperature (Tg) of epoxy adhesive) on the flexural performance and end debonding phenomenon in near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened, reinforced concrete (RC) beams. To this end, an experimental program consisting of 24 beams (divided into four groups) was performed, where different parameters was combined (i.e., service temperature, steel reinforcement ratio, CFRP ratio, and concrete compressive strength). In addition, the effect of the testing temperature on the end debonding phenomenon was investigated with an analytical procedure according to fib Bulletin 90, and the predictions were compared to experimental results. Taking specimens tested at 20 °C as a reference, no considerable change was observed in the ultimate load of the specimens tested below 60 °C (being in the range of epoxy Tg), and all specimens failed by FRP rupture. On the other hand, the increase in testing temperature up to 70 and 85 °C was followed by a decrease in the capacity of the strengthened beams and a change in failure mode, moving from FRP rupture to end debonding and concrete crushing. The analytical procedure successfully predicted the occurrence of premature end debonding failure and demonstrated that the effect of temperature on the mechanical properties of materials can be a key factor when predicting the premature end debonding in a NSM joint. Full article
Show Figures

Figure 1

20 pages, 4354 KiB  
Article
Fire Resistance Evaluation of Concrete Beams and Slabs Incorporating Natural Fiber-Reinforced Polymers
by Venkatesh Kodur, Svetha Venkatachari, Pratik Bhatt, Vasant A. Matsagar and Shamsher Bahadur Singh
Polymers 2023, 15(3), 755; https://doi.org/10.3390/polym15030755 - 2 Feb 2023
Cited by 9 | Viewed by 3488
Abstract
This paper presents a numerical study to evaluate the fire resistance of concrete beams and slabs incorporating natural fiber-reinforced polymers (FRP). A validated finite element model was applied to carry out a series of numerical studies on fire-exposed reinforced concrete (RC) beams and [...] Read more.
This paper presents a numerical study to evaluate the fire resistance of concrete beams and slabs incorporating natural fiber-reinforced polymers (FRP). A validated finite element model was applied to carry out a series of numerical studies on fire-exposed reinforced concrete (RC) beams and slabs strengthened with conventional and bio-based FRP composites. The model calculates the temperature-dependent moment–curvature relationship for various segments of the member at each time step, which are then used to calculate the moment capacity and deflection of the member. The variables in the beams and slabs include different strengthening techniques (externally bonded FRP and near-surface mounted FRP), different fiber composites, and fire insulation schemes (uninsulated and insulated). The results from the study indicate that the bio-based FRP-strengthened RC members undergo a faster degradation in moment capacity and also experience higher deflections under fire exposure. This leads to a lower fire resistance in RC members with bio-based FRP composites compared to beams and slabs with conventional FRP-strengthened concrete members. The addition of fire insulation to the bio-based FRP-strengthened members can enhance their fire performance and help achieve the required fire resistance ratings for use in building applications. In this study, the NSM CFRP-strengthened RC beams were found to have a fire resistance of 3 h without any fire insulation; however, the bio-based FRP-strengthened beams required a layer of vermiculite–gypsum-based fire insulation material (of about 25 mm) to achieve similar fire resistance. Full article
(This article belongs to the Special Issue High-Performance Biocomposite Reinforced by Natural Fibers II)
Show Figures

Figure 1

24 pages, 10736 KiB  
Article
Cracking and Fiber Debonding Identification of Concrete Deep Beams Reinforced with C-FRP Ropes against Shear Using a Real-Time Monitoring System
by Nikos A. Papadopoulos, Maria C. Naoum, George M. Sapidis and Constantin E. Chalioris
Polymers 2023, 15(3), 473; https://doi.org/10.3390/polym15030473 - 17 Jan 2023
Cited by 32 | Viewed by 3186
Abstract
Traditional methods for estimating structural deterioration are generally costly and inefficient. Recent studies have demonstrated that implementing a network of piezoelectric transducers mounted to critical regions of concrete structural members substantially increases the efficacy of the structural health monitoring (SHM) method. This study [...] Read more.
Traditional methods for estimating structural deterioration are generally costly and inefficient. Recent studies have demonstrated that implementing a network of piezoelectric transducers mounted to critical regions of concrete structural members substantially increases the efficacy of the structural health monitoring (SHM) method. This study uses a recently developed electro-mechanical-admittance (EMA)-based SHM system for real-time damage diagnosis of carbon FRP (C-FRP) ropes installed as shear composite reinforcement in RC deep beams. The applied SHM technique uses the frequency response measurements of a network of piezoelectric lead zirconate titanate (PZT) patches. The proposed strengthening methods using C-FRP ropes as ETS and NSM shear reinforcement and the applied anchorage techniques significantly enhanced the strength and the overall performance of the examined beams. The retrofitted beams exhibited increased shear capacity and improved post-peak response with substantial ductility compared with the brittle failure of the non-strengthened specimens. The health condition and the potential debonding failure of the applied composite fiber material were also examined and quantified using the proposed SHM technique. Damage quantification of C-FRP ropes is achieved by comparing and assessing the values of several statistical damage indices. The experimental results demonstrated that the proposed monitoring system successfully diagnosed the region where the damage occurred by providing early warning of the forthcoming critical shear cracking of concrete and C-FRP rope debonding failures. Furthermore, the internal PZT transducers showed sound indications of the C-FRP rope’s health condition, demonstrating a direct correlation with the mechanical performance of the fibers. Full article
Show Figures

Figure 1

Back to TopTop