Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = N-myc downstream-regulated gene 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1846 KiB  
Review
Insight into the Regulation of NDRG1 Expression
by Concetta Saponaro, Nicola Gammaldi, Viviana Cavallo, Maria Antonieta Ramírez-Morales, Francesco Alfredo Zito, Margherita Sonnessa, Francesco Vari, Ilaria Serra, Simona De Summa, Anna Maria Giudetti, Marco Trerotola and Daniele Vergara
Int. J. Mol. Sci. 2025, 26(8), 3582; https://doi.org/10.3390/ijms26083582 - 10 Apr 2025
Cited by 2 | Viewed by 1145
Abstract
The N-Myc Downstream Regulated Gene 1 (NDRG1) protein, a member of a family of four, has emerged as a key regulator of various physiological and pathological processes. Extensive knowledge has been gained on the modulation of NDRG1 expression during endoplasmic reticulum stress, autophagy, [...] Read more.
The N-Myc Downstream Regulated Gene 1 (NDRG1) protein, a member of a family of four, has emerged as a key regulator of various physiological and pathological processes. Extensive knowledge has been gained on the modulation of NDRG1 expression during endoplasmic reticulum stress, autophagy, and hypoxia. Moreover, new functions have emerged in recent years. Notably, NDRG1 regulates cell differentiation, metabolism, autophagy and vesicular transport. This has raised interest in the molecular mechanisms that control the cellular levels and activity of NDRG1. A series of studies have shown that NDRG1 can be finely regulated at the transcriptional, post-transcriptional, and translational levels. In addition, processes that mediate protein degradation and clearance also play key roles. Furthermore, three different NDRG1 proteoforms with distinct functions have been identified. An important question is the extent to which these proteoforms contribute to the regulation of cellular functions. Given the growing clinical interest in NDRG1, this review provides an overview of the regulatory mechanisms that control NDRG1 abundance, helping to deepen our understanding of the complex mechanisms underlying protein regulation. Full article
(This article belongs to the Special Issue The Interplay Between Cellular Stress and Human Diseases)
Show Figures

Figure 1

13 pages, 2376 KiB  
Article
HIF-1α Promotes Luteinization via NDRG1 Induction in the Human Ovary
by Akemi Nishigaki, Mitsuaki Ishida, Hiroaki Tsubokura, Yoji Hisamatsu, Yoshinobu Hirose and Hidetaka Okada
Biomedicines 2025, 13(2), 328; https://doi.org/10.3390/biomedicines13020328 - 31 Jan 2025
Cited by 1 | Viewed by 1037
Abstract
Background/Objectives: Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a crucial role in various physiological and pathological processes of the ovary. However, the timing of HIF-1α expression and its specific biological function in the follicular development of the human ovary remain unclear. [...] Read more.
Background/Objectives: Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a crucial role in various physiological and pathological processes of the ovary. However, the timing of HIF-1α expression and its specific biological function in the follicular development of the human ovary remain unclear. Therefore, in this study, we aimed to examine whether HIF-1α and its downstream gene, N-myc downstream-regulated gene 1 (NDRG1), exhibit stage-specific expression during the follicular development process in the human ovary. Methods: We used ovarian tissues from eight women with regular menstrual cycles who were not undergoing hormonal treatment. We investigated HIF-1α and NDRG1 expression and localization using immunohistochemistry. Further, we transfected human ovarian granulosa (KGN) cells with HIF-1α small interfering RNA (siRNA) to investigate the influence of HIF-1α on NDRG1 expression and progesterone synthesis. Results: The immunohistochemical analysis of human ovarian tissues revealed that HIF-1α was localized in the cytoplasm of granulosa cells (GCs) at both the primary and secondary follicular stages. Conversely, in tertiary and later developmental stages, HIF-1α was observed exclusively in the nucleus of GCs. Furthermore, while NDRG1 was not detected in primary follicles, it was present in all GCs beyond the tertiary stage. Notably, transfection of KGN cells with HIF-1α siRNA significantly decreased NDRG1 expression, at both the mRNA and protein levels, and in progesterone synthesis. Conclusion: Our results indicate that HIF-1α and NDRG1 are integral to follicular development and the early luteinization of pre-ovulatory follicles. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 3182 KiB  
Article
Deferasirox’s Anti-Chemoresistance and Anti-Metastatic Effect on Non-Small Cell Lung Carcinoma
by Yamixa Delgado, Anamaris Torres-Sanchez, Daraishka Perez, Grace Torres, Sthephanie Estrada, Natalia Ortiz Alvelo, Jaisy Vega, Laurie Santos, Aracelis Torres, Bismark A. Madera and Yancy Ferrer-Acosta
Biomedicines 2024, 12(10), 2272; https://doi.org/10.3390/biomedicines12102272 - 7 Oct 2024
Cited by 1 | Viewed by 2400
Abstract
Clinically approved iron chelators, originally designed to address iron overload disorders, have emerged as potential anticancer agents. Deferasirox (Def), a tridentate iron chelator, has demonstrated antiproliferative effects in cancer. Background/Objectives: This study aims to elucidate the mechanism of action of Def and [...] Read more.
Clinically approved iron chelators, originally designed to address iron overload disorders, have emerged as potential anticancer agents. Deferasirox (Def), a tridentate iron chelator, has demonstrated antiproliferative effects in cancer. Background/Objectives: This study aims to elucidate the mechanism of action of Def and its impact on non-small cell lung carcinoma (NSCLC). Methods: NSCLC A549 cells were treated with Def to assess cytotoxicity, the effect on nuclear and mitochondrial pathways, and iron-containing proteins and genes to evaluate anti-metastasis and chemoresistance. A lung carcinoma mouse model was used for in vivo studies. Results: Our findings revealed that Def induced cytotoxicity, effectively chelated intracellular iron, and triggered apoptosis through the increase in phosphatidylserine externalization and caspase 3 activity. Additionally, Def caused G0/G1 cell cycle arrest by downregulating the ribonucleotide reductase catalytic subunit. Furthermore, Def perturbed mitochondrial function by promoting the production of reactive oxygen species and the inhibition of glutathione as a measurement of ferroptosis activation. Def demonstrated inhibitory effects on cell migration in scratch assays, which was supported by the upregulation of n-myc downstream-regulated gene 1 and downregulation of the epidermal growth factor receptor protein. Also, Def downregulated one of the main markers of chemoresistance, the ABCB1 gene. In vivo experiments using a lung carcinoma mouse model showed that Def treatment did not affect the animal’s body weight and showed a significant decrease in tumor growth. Conclusions: This investigation lays the groundwork for unraveling Def action’s molecular targets and mechanisms in lung carcinoma, particularly within iron-related pathways, pointing out its anti-metastasis and anti-chemoresistance effect. Full article
Show Figures

Figure 1

13 pages, 1299 KiB  
Article
Identification and Characterization of Novel Founder Mutations in NDRG1: Refining the Genetic Landscape of Charcot–Marie–Tooth Disease Type 4D in Bulgaria
by Derek Atkinson, Teodora Chamova, Ayse Candayan, Kristina Kastreva, Ognian Asenov, Ivan Litvinenko, Alejandro Estrada-Cuzcano, Els De Vriendt, Georgi Kukushev, Ivailo Tournev and Albena Jordanova
Int. J. Mol. Sci. 2024, 25(16), 9047; https://doi.org/10.3390/ijms25169047 - 21 Aug 2024
Cited by 2 | Viewed by 1561
Abstract
Charcot–Marie–Tooth neuropathy type 4D (CMT4D) is a rare genetic disorder of the peripheral nervous system caused by biallelic mutations in the N-Myc Downstream Regulated 1 gene (NDRG1). Patients present with an early onset demyelinating peripheral neuropathy causing severe distal muscle weakness [...] Read more.
Charcot–Marie–Tooth neuropathy type 4D (CMT4D) is a rare genetic disorder of the peripheral nervous system caused by biallelic mutations in the N-Myc Downstream Regulated 1 gene (NDRG1). Patients present with an early onset demyelinating peripheral neuropathy causing severe distal muscle weakness and sensory loss, leading to loss of ambulation and progressive sensorineural hearing loss. The disorder was initially described in the Roma community due to a common founder mutation, and only a handful of disease-causing variants have been described in this gene so far. Here, we present genetic and clinical findings from a large Bulgarian cohort of demyelinating CMT patients harboring recurrent and novel variants in the NDRG1 gene. Notably, two splice-site variants are exclusive to Bulgarian Muslims and reside in ancestral haplotypes, suggesting a founder effect. Functional characterization of these novel variants implicates a loss-of-function mechanism due to shorter gene products. Our findings contribute to a deeper understanding of the genetic and clinical heterogeneity of CMT4D and highlight novel founder mutations in the ethnic minority of Bulgarian Muslims. Full article
(This article belongs to the Special Issue New Advances in the Treatment and Diagnosis of Neuromuscular Diseases)
Show Figures

Figure 1

13 pages, 4530 KiB  
Article
SIRT6 Inhibits Anoikis of Colorectal Cancer Cells by Down-Regulating NDRG1
by Fengying Li, Wentao Yu, Xiaoling Zhou, Jingyu Hou, Yunyi Gao, Jun Zhang and Xiangwei Gao
Int. J. Mol. Sci. 2024, 25(11), 5585; https://doi.org/10.3390/ijms25115585 - 21 May 2024
Cited by 3 | Viewed by 1949
Abstract
Anoikis, a form of apoptosis resulting from the loss of cell–extracellular matrix interaction, is a significant barrier to cancer cell metastasis. However, the epigenetic regulation of this process remains to be explored. Here, we demonstrate that the histone deacetylase sirtuin 6 (SIRT6) plays [...] Read more.
Anoikis, a form of apoptosis resulting from the loss of cell–extracellular matrix interaction, is a significant barrier to cancer cell metastasis. However, the epigenetic regulation of this process remains to be explored. Here, we demonstrate that the histone deacetylase sirtuin 6 (SIRT6) plays a pivotal role in conferring anoikis resistance to colorectal cancer (CRC) cells. The protein level of SIRT6 is negatively correlated with anoikis in CRC cells. The overexpression of SIRT6 decreases while the knockdown of SIRT6 increases detachment-induced anoikis. Mechanistically, SIRT6 inhibits the transcription of N-myc downstream-regulated gene 1 (NDRG1), a negative regulator of the AKT signaling pathway. We observed the up-regulation of SIRT6 in advanced-stage CRC samples. Together, our findings unveil a novel epigenetic program regulating the anoikis of CRC cells. Full article
(This article belongs to the Special Issue The Function of Stress Proteins in Cell Death and Diseases)
Show Figures

Figure 1

14 pages, 4591 KiB  
Communication
Antimetastatic Activity of Apoptolidin A by Upregulation of N-Myc Downstream-Regulated Gene 1 Expression in Human Colorectal Cancer Cells
by Kay Zin Kyaw, Jiyoon Park, Seung Ho Oh, Ji Yun Lee, Eun Seo Bae, Hyen Joo Park, Dong-Chan Oh and Sang Kook Lee
Pharmaceuticals 2023, 16(4), 491; https://doi.org/10.3390/ph16040491 - 26 Mar 2023
Viewed by 2325
Abstract
Colorectal cancer (CRC) is one of the most prevalent tumors with high metastatic potential; consequently, finding new drug candidates that suppress tumor metastasis is essential. Apoptolidin A is a macrocyclic lactone produced by Amycolatopsis sp. DW02G. It exhibits significant cytotoxicity against several cancer [...] Read more.
Colorectal cancer (CRC) is one of the most prevalent tumors with high metastatic potential; consequently, finding new drug candidates that suppress tumor metastasis is essential. Apoptolidin A is a macrocyclic lactone produced by Amycolatopsis sp. DW02G. It exhibits significant cytotoxicity against several cancer cell lines, but its effects on CRC cells remain unknown. Therefore, the present study investigated the antiproliferative and antimetastatic activities of apoptolidin A and its underlying molecular mechanisms in CRC cells. Apoptolidin A effectively inhibited CRC cell growth and colony formation. The induction of G0/G1 phase cell cycle arrest was associated with the downregulation of cyclin D1 and CDK4/6 expression. Long-term exposure to apoptolidin A also induced apoptosis as confirmed by the downregulation and upregulation of Bcl-2 and Bax expression, respectively. Moreover, apoptolidin A effectively upregulated the suppressed expression of N-Myc downstream-regulated gene 1 (NDRG1), a tumor suppressor gene, in a concentration-dependent manner in CRC cells. The antimetastatic potential of apoptolidin A was also correlated with the expression of epithelial–mesenchymal transition (EMT) biomarkers, including the upregulation of E-cadherin and downregulation of N-cadherin, vimentin, snail, and MMP9 in CRC cells. These findings suggest that apoptolidin A exerts antiproliferative and antimetastatic activities by regulating the NDRG1-activated EMT pathway in CRC cells. Full article
Show Figures

Graphical abstract

14 pages, 1750 KiB  
Article
Irrespective of Plaque Activity, Multiple Sclerosis Brain Periplaques Exhibit Alterations of Myelin Genes and a TGF-Beta Signature
by Serge Nataf, Marine Guillen and Laurent Pays
Int. J. Mol. Sci. 2022, 23(23), 14993; https://doi.org/10.3390/ijms232314993 - 30 Nov 2022
Cited by 6 | Viewed by 2229
Abstract
In a substantial share of patients suffering from multiple sclerosis (MS), neurological functions slowly deteriorate despite a lack of radiological activity. Such a silent progression, observed in either relapsing-remitting or progressive forms of MS, is driven by mechanisms that appear to be independent [...] Read more.
In a substantial share of patients suffering from multiple sclerosis (MS), neurological functions slowly deteriorate despite a lack of radiological activity. Such a silent progression, observed in either relapsing-remitting or progressive forms of MS, is driven by mechanisms that appear to be independent from plaque activity. In this context, we previously reported that, in the spinal cord of MS patients, periplaques cover large surfaces of partial demyelination characterized notably by a transforming growth factor beta (TGF-beta) molecular signature and a decreased expression of the oligodendrocyte gene NDRG1 (N-Myc downstream regulated 1). In the present work, we re-assessed a previously published RNA expression dataset in which brain periplaques were originally used as internal controls. When comparing the mRNA profiles obtained from brain periplaques with those derived from control normal white matter samples, we found that, irrespective of plaque activity, brain periplaques exhibited a TGF-beta molecular signature, an increased expression of TGFB2 (transforming growth factor beta 2) and a decreased expression of the oligodendrocyte genes NDRG1 (N-Myc downstream regulated 1) and MAG (myelin-associated glycoprotein). From these data obtained at the mRNA level, a survey of the human proteome allowed predicting a protein–protein interaction network linking TGFB2 to the down-regulation of both NDRG1 and MAG in brain periplaques. To further elucidate the role of NDRG1 in periplaque-associated partial demyelination, we then extracted the interaction network linking NDRG1 to proteins detected in human central myelin sheaths. We observed that such a network was highly significantly enriched in RNA-binding proteins that notably included several HNRNPs (heterogeneous nuclear ribonucleoproteins) involved in the post-transcriptional regulation of MAG. We conclude that both brain and spinal cord periplaques host a chronic process of tissue remodeling, during which oligodendrocyte myelinating functions are altered. Our findings further suggest that TGFB2 may fuel such a process. Overall, the present work provides additional evidence that periplaque-associated partial demyelination may drive the silent progression observed in a subset of MS patients. Full article
Show Figures

Figure 1

26 pages, 2108 KiB  
Article
Neurodegenerative Disorder Risk in Krabbe Disease Carriers
by Lorenza Vantaggiato, Enxhi Shaba, Alfonso Carleo, Daiana Bezzini, Giovanna Pannuzzo, Alice Luddi, Paola Piomboni, Luca Bini and Laura Bianchi
Int. J. Mol. Sci. 2022, 23(21), 13537; https://doi.org/10.3390/ijms232113537 - 4 Nov 2022
Cited by 12 | Viewed by 4349
Abstract
Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system [...] Read more.
Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc −/−), heterozygous (galc +/−), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions. Full article
Show Figures

Graphical abstract

18 pages, 5493 KiB  
Article
WNT1 Inducible Signaling Pathway Protein 1 Is a Stroma-Specific Secreting Protein Inducing a Fibroblast Contraction and Carcinoma Cell Growth in the Human Prostate
by Kang-Shuo Chang, Syue-Ting Chen, Hsin-Ching Sung, Shu-Yuan Hsu, Wei-Yin Lin, Chen-Pang Hou, Yu-Hsiang Lin, Tsui-Hsia Feng, Ke-Hung Tsui and Horng-Heng Juang
Int. J. Mol. Sci. 2022, 23(19), 11437; https://doi.org/10.3390/ijms231911437 - 28 Sep 2022
Cited by 11 | Viewed by 2598
Abstract
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of [...] Read more.
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Cancers 2.0)
Show Figures

Graphical abstract

14 pages, 1322 KiB  
Review
A Tumor Suppressor Gene, N-myc Downstream-Regulated Gene 1 (NDRG1), in Gliomas and Glioblastomas
by Yukiko Nakahara, Hiroshi Ito, Hiroki Namikawa, Takashi Furukawa, Fumitaka Yoshioka, Atsushi Ogata, Jun Masuoka and Tatsuya Abe
Brain Sci. 2022, 12(4), 473; https://doi.org/10.3390/brainsci12040473 - 3 Apr 2022
Cited by 8 | Viewed by 3845
Abstract
The development of potent and selective therapeutic approaches to glioblastoma (GBM) requires the identification of molecular pathways that critically regulate the survival and proliferation of GBM. Glioblastoma stem-like cells (GSCs) possess stem-cell-like properties, self-renewal, and differentiation into multiple neural cell lineages. From a [...] Read more.
The development of potent and selective therapeutic approaches to glioblastoma (GBM) requires the identification of molecular pathways that critically regulate the survival and proliferation of GBM. Glioblastoma stem-like cells (GSCs) possess stem-cell-like properties, self-renewal, and differentiation into multiple neural cell lineages. From a clinical point of view, GSCs have been reported to resist radiation and chemotherapy. GSCs are influenced by the microenvironment, especially the hypoxic condition. N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor with the potential to suppress the proliferation, invasion, and migration of cancer cells. Previous studies have reported that deregulated expression of NDRG1 affects tumor growth and clinical outcomes of patients with GBM. This literature review aimed to clarify the critical role of NDRG1 in tumorigenesis and acquirement of resistance for anti-GBM therapies, further to discussing the possibility and efficacy of NDRG1 as a novel target of treatment for GBM. The present review was conducted by searching the PubMed and Scopus databases. The search was conducted in February 2022. We review current knowledge on the regulation and signaling of NDRG1 in neuro-oncology. Finally, the role of NDRG1 in GBM and potential clinical applications are discussed. Full article
(This article belongs to the Special Issue Advance in Glioma Invasion)
Show Figures

Figure 1

14 pages, 3005 KiB  
Article
NDRG1 Expression Is an Independent Prognostic Factor in Inflammatory Breast Cancer
by Emilly S. Villodre, Yun Gong, Xiaoding Hu, Lei Huo, Esther C. Yoon, Naoto T. Ueno, Wendy A. Woodward, Debu Tripathy, Juhee Song and Bisrat G. Debeb
Cancers 2020, 12(12), 3711; https://doi.org/10.3390/cancers12123711 - 10 Dec 2020
Cited by 23 | Viewed by 4003
Abstract
NDRG1 is widely described as a metastasis suppressor in breast cancer. However, we found that NDRG1 is critical in promoting tumorigenesis and brain metastasis in mouse models of inflammatory breast cancer (IBC), a rare but highly aggressive form of breast cancer. We hypothesized [...] Read more.
NDRG1 is widely described as a metastasis suppressor in breast cancer. However, we found that NDRG1 is critical in promoting tumorigenesis and brain metastasis in mouse models of inflammatory breast cancer (IBC), a rare but highly aggressive form of breast cancer. We hypothesized that NDRG1 is a prognostic marker associated with poor outcome in patients with IBC. NDRG1 levels in tissue microarrays from 64 IBC patients were evaluated by immunohistochemical staining with NDRG1 (32 NDRG1-low (≤median), 32 NDRG1-high (>median)). Overall and disease-free survival (OS and DSS) were analyzed with Kaplan–Meier curves and log-rank test. Univariate analysis showed NDRG1 expression, tumor grade, disease stage, estrogen receptor (ER) status, and receipt of adjuvant radiation to be associated with OS and DSS. NDRG1-high patients had poorer 10-year OS and DSS than NDRG1-low patients (OS, 19% vs. 45%, p = 0.0278; DSS, 22% vs. 52%, p = 0.0139). On multivariable analysis, NDRG1 independently predicted OS (hazard ratio (HR) = 2.034, p = 0.0274) and DSS (HR = 2.287, p = 0.0174). NDRG1-high ER-negative tumors had worse outcomes OS, p = 0.0003; DSS, p = 0.0003; and NDRG1-high tumors that received adjuvant radiation treatment had poor outcomes (OS, p = 0.0088; DSS, p = 0.0093). NDRG1 was a significant independent prognostic factor for OS and DSS in IBC patients. Targeting NDRG1 may represent a novel strategy for improving clinical outcomes for patients with IBC. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

17 pages, 5423 KiB  
Article
Migration and Invasion Enhancer 1 Is an NF-ĸB-Inducing Gene Enhancing the Cell Proliferation and Invasion Ability of Human Prostate Carcinoma Cells In Vitro and In Vivo
by Kang-Shuo Chang, Ke-Hung Tsui, Yu-Hsiang Lin, Chen-Pang Hou, Tsui-Hsia Feng and Horng-Heng Juang
Cancers 2019, 11(10), 1486; https://doi.org/10.3390/cancers11101486 - 2 Oct 2019
Cited by 16 | Viewed by 3337
Abstract
: Migration and invasion enhancer 1 (MIEN1) is a membrane-anchored protein and exists in various cancerous tissues. However, the roles of MIEN1 in prostate cancer have not yet been clearly addressed. We determined the expression, biological functions, and regulatory mechanisms of MIEN1 in [...] Read more.
: Migration and invasion enhancer 1 (MIEN1) is a membrane-anchored protein and exists in various cancerous tissues. However, the roles of MIEN1 in prostate cancer have not yet been clearly addressed. We determined the expression, biological functions, and regulatory mechanisms of MIEN1 in the prostate. The results of immunohistochemical analysis indicated that MIEN1 was expressed specifically in epithelial cells and significantly higher in adenocarcinoma as compared to in normal tissues. MIEN1 enhanced in vitro cell proliferation, invasion, and in vivo tumorigenesis. Meanwhile, MIEN1 attenuated cisplatin-induced apoptosis in PC-3 cells. Overexpression of NF-ĸB-inducing kinase (NIK) enhanced MIEN1 expression, while overexpression of NF-ĸB inhibitor α (IĸBα) blocked MIEN1 expression in PC-3 cells. In prostate carcinoma cells, MIEN1 provoked Akt phosphorylation; moreover, MIEN1 downregulated N-myc downstream regulated 1 (NDRG1) but upregulated interleukin-6 (IL-6) gene expression. MK2206, an Akt inhibitor, impeded the modulation of MIEN1 on NDRG1 and IL-6 expressions. Our studies suggest that MIEN1 is an NF-ĸB downstream oncogene in the human prostate. Accordingly, the modulation of Akt signaling in the gene expressions of NDRG1 and IL-6 may account for the functions of MIEN1 in cell proliferation, invasion, and tumorigenesis in prostate carcinoma cells. Full article
Show Figures

Graphical abstract

24 pages, 9626 KiB  
Article
Arabidopsis NDL-AGB1 modules Play Role in Abiotic Stress and Hormonal Responses Along with Their Specific Functions
by Arpana Katiyar and Yashwanti Mudgil
Int. J. Mol. Sci. 2019, 20(19), 4736; https://doi.org/10.3390/ijms20194736 - 24 Sep 2019
Cited by 6 | Viewed by 4209
Abstract
Arabidopsis N-MYC Downregulated Like Proteins (NDLs) are interacting partners of G-Protein core components. Animal homologs of the gene family N-myc downstream regulated gene (NDRG) has been found to be induced during hypoxia, DNA damage, in presence of reducing agent, increased intracellular calcium level [...] Read more.
Arabidopsis N-MYC Downregulated Like Proteins (NDLs) are interacting partners of G-Protein core components. Animal homologs of the gene family N-myc downstream regulated gene (NDRG) has been found to be induced during hypoxia, DNA damage, in presence of reducing agent, increased intracellular calcium level and in response to metal ions like nickel and cobalt, which indicates the involvement of the gene family during stress responses. Arabidopsis NDL gene family contains three homologs NDL1, NDL2 and NDL3 which share up to 75% identity at protein level. Previous studies on NDL proteins involved detailed characterization of the role of NDL1; roles of other two members were also established in root and shoot development using miRNA knockdown approach. Role of entire family in development has been established but specific functions of NDL2 and NDL3 if any are still unknown. Our in-silico analysis of NDLs promoters reveled that all three members share some common and some specific transcription factors (TFs) binding sites, hinting towards their common as well as specific functions. Based on promoter elements characteristics, present study was designed to carry out comparative analysis of the Arabidopsis NDL family during different stages of plant development, under various abiotic stresses and plant hormonal responses, in order to find out their specific and combined roles in plant growth and development. Developmental analysis using GUS fusion revealed specific localization/expression during different stages of development for all three family members. Stress analysis after treatment with various hormonal and abiotic stresses showed stress and tissue-specific differential expression patterns for all three NDL members. All three NDL members were collectively showed role in dehydration stress along with specific responses to various treatments. Their specific expression patterns were affected by presence of interacting partner the Arabidopsis heterotrimeric G-protein β subunit 1 (AGB1). The present study will improve our understanding of the possible molecular mechanisms of action of the independent NDLAGB1 modules during stress and hormonal responses. These findings also suggest potential use of this knowledge for crop improvement. Full article
(This article belongs to the Special Issue Mapping Abiotic Stress-Tolerance Genes in Plants)
Show Figures

Graphical abstract

15 pages, 2109 KiB  
Article
Metallothionein 3 Is a Hypoxia-Upregulated Oncogene Enhancing Cell Invasion and Tumorigenesis in Human Bladder Carcinoma Cells
by Ke-Hung Tsui, Chen-Pang Hou, Kang-Shuo Chang, Yu-Hsiang Lin, Tsui-Hsia Feng, Chiu-Chun Chen, Yi-Syuan Shin and Horng-Heng Juang
Int. J. Mol. Sci. 2019, 20(4), 980; https://doi.org/10.3390/ijms20040980 - 23 Feb 2019
Cited by 22 | Viewed by 4995
Abstract
Metallothioneins have been viewed as modulators in a number of biological regulations regarding cancerous development; however, the function of metallothionein 3 (MT3) in bladder cancer is unexplored. We determined the regulatory mechanisms and potential function of MT3 in bladder carcinoma cells. [...] Read more.
Metallothioneins have been viewed as modulators in a number of biological regulations regarding cancerous development; however, the function of metallothionein 3 (MT3) in bladder cancer is unexplored. We determined the regulatory mechanisms and potential function of MT3 in bladder carcinoma cells. Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-qPCR) assays revealed that TSGH-8301 cells expressed more MT3 levels than RT-4, HT1376, and T24 cells. Immunoblot and RT-qPCR assays showed that arsenic (AS2O3) treatments enhanced the gene expression of MT3. Hypoxia induced HIF-1α, HIF-2α, and MT3 expression; furthermore, HIF-2α-knockdown attenuated hypoxic activation on MT3 expression. Ectopic overexpression of MT3 increased cell proliferation, invasion, and tumorigenesis significantly in T24 and HT1376 cells in vitro and in vivo; however, MT3-knockdown in TSGH-8301 cells had the reverse effect. Moreover, knockdown of MT3 enhanced arsenic-induced apoptosis determined by the Annexin V-FITC apoptosis assay. MT3-overexpression downregulated the gene expressions of N-myc downstream regulated gene 1 (NDRG1), N-myc downstream regulated gene 2 (NDRG2), and the mammary serine protease inhibitor (MASPIN) in HT1376 and T24 cells, whereas MT3-knockdown in TSGH-8301 cells had the opposite effect. The experiments indicated that MT3 is an arsenic- and hypoxia-upregulated oncogene that promotes cell growth and invasion of bladder carcinoma cells via downregulation of NDRG1, NDRG2, and MASPIN expressions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

14 pages, 2812 KiB  
Article
Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells
by Kun-Chun Chiang, Shih-Wei Yang, Kai-Ping Chang, Tsui-Hsia Feng, Kang-Shuo Chang, Ke-Hung Tsui, Yi-Syuan Shin, Chiu-Chun Chen, Mei Chao and Horng-Heng Juang
Int. J. Mol. Sci. 2018, 19(5), 1397; https://doi.org/10.3390/ijms19051397 - 8 May 2018
Cited by 28 | Viewed by 5684
Abstract
Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene [...] Read more.
Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop