Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Mori–Tanaka homogenisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4805 KiB  
Article
Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticles
by Seren Acarer, İnci Pir, Mertol Tüfekci, Tuğba Erkoç, Vehbi Öztekin, Can Dikicioğlu, Güler Türkoğlu Demirkol, Sevgi Güneş Durak, Mehmet Şükrü Özçoban, Tuba Yelda Temelli Çoban, Selva Çavuş and Neşe Tüfekci
Nanomaterials 2022, 12(21), 3721; https://doi.org/10.3390/nano12213721 - 23 Oct 2022
Cited by 15 | Viewed by 2918
Abstract
In this study, neat polyacrylonitrile (PAN) and fumed silica (FS)-doped PAN membranes (0.1, 0.5 and 1 wt% doped PAN/FS) are prepared using the phase inversion method and are characterised extensively. According to the Fourier Transform Infrared (FTIR) spectroscopy analysis, the addition of FS [...] Read more.
In this study, neat polyacrylonitrile (PAN) and fumed silica (FS)-doped PAN membranes (0.1, 0.5 and 1 wt% doped PAN/FS) are prepared using the phase inversion method and are characterised extensively. According to the Fourier Transform Infrared (FTIR) spectroscopy analysis, the addition of FS to the neat PAN membrane and the added amount changed the stresses in the membrane structure. The Scanning Electron Microscope (SEM) results show that the addition of FS increased the porosity of the membrane. The water content of all fabricated membranes varied between 50% and 88.8%, their porosity ranged between 62.1% and 90%, and the average pore size ranged between 20.1 and 21.8 nm. While the neat PAN membrane’s pure water flux is 299.8 L/m2 h, it increased by 26% with the addition of 0.5 wt% FS. Furthermore, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques are used to investigate the membranes’ thermal properties. Finally, the mechanical characterisation of manufactured membranes is performed experimentally with tensile testing under dry and wet conditions. To be able to provide further explanation to the explored mechanics of the membranes, numerical methods, namely the finite element method and Mori–Tanaka mean-field homogenisation are performed. The mechanical characterisation results show that FS reinforcement increases the membrane rigidity and wet membranes exhibit more compliant behaviour compared to dry membranes. Full article
Show Figures

Figure 1

17 pages, 3279 KiB  
Article
Homogenisation of the Local Thermal Conductivity in Injection-Moulded Short Fibre Reinforced Composites
by Majid Mokarizadehhaghighishirazi, Bart Buffel, Stepan V. Lomov and Frederik Desplentere
Polymers 2022, 14(16), 3360; https://doi.org/10.3390/polym14163360 - 17 Aug 2022
Cited by 4 | Viewed by 2480
Abstract
This paper deals with predicting the effective thermal conductivity (ETC) of injection-moulded short fibre reinforced polymers (SFRPs) using two different homogenisation schemes: a scheme based on the dielectric theory for pseudo-oriented inclusions and a two-step homogenisation model based on the mean-field homogenisation approach. [...] Read more.
This paper deals with predicting the effective thermal conductivity (ETC) of injection-moulded short fibre reinforced polymers (SFRPs) using two different homogenisation schemes: a scheme based on the dielectric theory for pseudo-oriented inclusions and a two-step homogenisation model based on the mean-field homogenisation approach. In both cases, the fibre orientation tensor (FOT) obtained from Autodesk Moldflow® simulation was used. The Moldflow FOT predictions were validated via structure tensor analysis of micro-computed X-ray tomography (micro-CT) scans of the part. In the dielectric-wise approach, the orientation of fibres was originally defined by a scalar parameter, which is related to the diagonal components of the FOT. In the two-step homogenisation approach, an interpolative model based on the Mori–Tanaka theory is used in the first step for calculating the ETC for the ideal case of unidirectional fibre alignment, followed by a second step in which orientation averaging based on the FOT inside each element is applied. The ETC was calculated using both schemes for the specific case of uniform fibre orientation distribution and at three different locations with non-identical FOTs of an injection-moulded SFRP part. The results are compared with each other and evaluated against the direct numerical simulation for the uniform fibre orientation and experimental measurements for the injection-moulded SFRP. This shows that while the two-step homogenisation can predict the ETC in the full range of orientations between the perfectly aligned and uniformly distributed fibres, the dielectric-wise approach is only capable of modelling the ETC when distributions are close to the two extreme ends of the orientation spectrum. Full article
Show Figures

Figure 1

23 pages, 4081 KiB  
Article
Manufacturing and Characterisation of Polymeric Membranes for Water Treatment and Numerical Investigation of Mechanics of Nanocomposite Membranes
by Seren Acarer, İnci Pir, Mertol Tüfekci, Güler Türkoğlu Demirkol and Neşe Tüfekci
Polymers 2021, 13(10), 1661; https://doi.org/10.3390/polym13101661 - 20 May 2021
Cited by 31 | Viewed by 4520
Abstract
In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 μm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform [...] Read more.
In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 μm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO2) reinforced nanocomposite membranes are approximately determined by the Mori–Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane. Full article
Show Figures

Graphical abstract

15 pages, 4887 KiB  
Article
Model Validation of a Porous Piezoelectric Energy Harvester Using Vibration Test Data
by Germán Martínez-Ayuso, Hamed Haddad Khodaparast, Yan Zhang, Christopher R. Bowen, Michael I. Friswell, Alexander D. Shaw and Hadi Madinei
Vibration 2018, 1(1), 123-137; https://doi.org/10.3390/vibration1010010 - 18 Aug 2018
Cited by 6 | Viewed by 4288
Abstract
In this paper, a finite element model is coupled to an homogenisation theory in order to predict the energy harvesting capabilities of a porous piezoelectric energy harvester. The harvester consists of a porous piezoelectric patch bonded to the root of a cantilever beam. [...] Read more.
In this paper, a finite element model is coupled to an homogenisation theory in order to predict the energy harvesting capabilities of a porous piezoelectric energy harvester. The harvester consists of a porous piezoelectric patch bonded to the root of a cantilever beam. The material properties of the porous piezoelectric material are estimated by the Mori–Tanaka homogenisation method, which is an analytical method that provides the material properties as a function of the porosity of the piezoelectric composite. These material properties are then used in a finite element model of the harvester that predicts the deformation and voltage output for a given base excitation of the cantilever beam, onto which the piezoelectric element is bonded. Experiments are performed to validate the numerical model, based on the fabrication and testing of several demonstrators composed of porous piezoelectric patches with different percentages of porosity bonded to an aluminium cantilever beam. The electrical load is simulated using a resistor and the voltage across the resistor is measured to estimate the energy generated. The beam is excited in a range of frequencies close to the first and second modes using base excitation. The effects of the porosity and the assumptions made for homogenisation are discussed. Full article
Show Figures

Figure 1

Back to TopTop