Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1707 KB  
Article
Distinct Neurodegenerative Pathways in Two NBIA Subtypes: Inflammatory Activation in C19orf12 but Not in PANK2 Mutation Carriers
by Marta Skowrońska, Agnieszka Cudna, Barbara Pakuła, Magdalena Lebiedzińska-Arciszewska, Justyna Janikiewicz, Aneta M. Dobosz, Patrycja Jakubek-Olszewska, Agata Wydrych, Maciej Cwyl, Agnieszka Dobrzyń, Mariusz R. Więckowski and Iwona Kurkowska-Jastrzębska
Cells 2025, 14(22), 1801; https://doi.org/10.3390/cells14221801 - 17 Nov 2025
Viewed by 485
Abstract
Background: Biomarker analysis in neurodegeneration with brain iron accumulation (NBIA) can offer valuable insights into the disease’s pathology and natural history. Methods: Twenty-five patients with C19orf12 mutations causing mitochondrial membrane protein-associated neurodegeneration (MPAN), 12 patients with PANK2 mutations causing pantothenate kinase-associated neurodegeneration (PKAN), [...] Read more.
Background: Biomarker analysis in neurodegeneration with brain iron accumulation (NBIA) can offer valuable insights into the disease’s pathology and natural history. Methods: Twenty-five patients with C19orf12 mutations causing mitochondrial membrane protein-associated neurodegeneration (MPAN), 12 patients with PANK2 mutations causing pantothenate kinase-associated neurodegeneration (PKAN), and 30 age- and gender-matched controls were studied. Serum levels of MMP-9, S100B, ICAM-1, E- and P-selectins, total α-synuclein, neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), Tau, ubiquitin-C-terminal hydrolase-L1 (UCH-L1), and brain-derived neurotrophic factor (BDNF) were measured. Clinical status was evaluated with dedicated rating scales. Results: Compared to the control group, MPAN patients had significantly higher serum levels of nearly all biomarkers, except BDNF. NfL, GFAP, and UCH-L1, were elevated by 5, 2, and 3.5 times, respectively. PKAN patients showed no significant differences in GFAP, UCH-L1, and S100B levels compared to controls. However, NfL and Tau levels were increased by 3 and 1.8 times, respectively. A correlation was observed between disease severity and levels of NfL, Tau, and UCH-L1 in MPAN, and GFAP, Tau, and UCH-L1 in PKAN. Conclusions: Patients with MPAN and PKAN showed increased levels of neurodegeneration biomarkers. Elevated inflammation and blood–brain barrier dysfunction biomarkers were specific to MPAN patients. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

20 pages, 2436 KB  
Review
An Update and Perspectives on Mitochondrial Membrane Protein-Associated Neurodegeneration and C19orf12 Research
by Barbara Gnutti, Arcangela Iuso, Chloé Angelini and Dario Finazzi
Brain Sci. 2025, 15(8), 777; https://doi.org/10.3390/brainsci15080777 - 22 Jul 2025
Viewed by 1364
Abstract
Mitochondrial Membrane Protein-Associated Neurodegeneration is a rare monogenic form of neurodegeneration characterized by iron accumulation in the brain. It is due to variants in the orphan gene C19orf12. Since its definition in 2011, many scientific groups have investigated the clinical features and [...] Read more.
Mitochondrial Membrane Protein-Associated Neurodegeneration is a rare monogenic form of neurodegeneration characterized by iron accumulation in the brain. It is due to variants in the orphan gene C19orf12. Since its definition in 2011, many scientific groups have investigated the clinical features and molecular underpinnings of the disorder. In this review, we summarize the main points of progress in this field, trying to highlight the issues that need further attention and efforts to speed up the diagnostic path, improve the existing treatment options, and define targeted therapies. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

19 pages, 3531 KB  
Article
Identification of Autophagy as a Functional Target Suitable for the Pharmacological Treatment of Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) In Vitro
by Enrica Zanuttigh, Kevork Derderian, Miriam A. Güra, Arie Geerlof, Ivano Di Meo, Chiara Cavestro, Stefan Hempfling, Stephanie Ortiz-Collazos, Mario Mauthe, Tomasz Kmieć, Eugenia Cammarota, Maria Carla Panzeri, Thomas Klopstock, Michael Sattler, Juliane Winkelmann, Ana C. Messias and Arcangela Iuso
Pharmaceutics 2023, 15(1), 267; https://doi.org/10.3390/pharmaceutics15010267 - 12 Jan 2023
Cited by 14 | Viewed by 4659
Abstract
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a relentlessly progressive neurodegenerative disorder caused by mutations in the C19orf12 gene. C19orf12 has been implicated in playing a role in lipid metabolism, mitochondrial function, and autophagy, however, the precise functions remain unknown. To identify new robust [...] Read more.
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a relentlessly progressive neurodegenerative disorder caused by mutations in the C19orf12 gene. C19orf12 has been implicated in playing a role in lipid metabolism, mitochondrial function, and autophagy, however, the precise functions remain unknown. To identify new robust cellular targets for small compound treatments, we evaluated reported mitochondrial function alterations, cellular signaling, and autophagy in a large cohort of MPAN patients and control fibroblasts. We found no consistent alteration of mitochondrial functions or cellular signaling messengers in MPAN fibroblasts. In contrast, we found that autophagy initiation is consistently impaired in MPAN fibroblasts and show that C19orf12 expression correlates with the amount of LC3 puncta, an autophagy marker. Finally, we screened 14 different autophagy modulators to test which can restore this autophagy defect. Amongst these compounds, carbamazepine, ABT-737, LY294002, oridonin, and paroxetine could restore LC3 puncta in the MPAN fibroblasts, identifying them as novel potential therapeutic compounds to treat MPAN. In summary, our study confirms a role for C19orf12 in autophagy, proposes LC3 puncta as a functionally robust and consistent readout for testing compounds, and pinpoints potential therapeutic compounds for MPAN. Full article
(This article belongs to the Special Issue Advances in Mitochondria-Targeted Drug Delivery)
Show Figures

Figure 1

Back to TopTop