Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = MgAl2O4 spinel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8131 KB  
Article
The Role of the Crystal Plane Irradiated by Swift Heavy Ions in the Formation of Defects in MgAl2O4 Crystals
by Abdirash Akilbekov, Arseniy Kiryakov, Alexey Podshivalov, Zhulduz Ospanova, Gulnara Aralbayeva, Anatoli I. Popov, Zein Baimukhanov, Diana Junisbekova and Alma Dauletbekova
Crystals 2025, 15(12), 1020; https://doi.org/10.3390/cryst15121020 - 28 Nov 2025
Viewed by 46
Abstract
Model experiments were performed on the interaction of swift heavy 220 MeV Xe ions with MgAl2O4 spinel crystal with (100), (110), and (111) planes. A computational analysis of the energy parameters of Xe ions in MgAl2O4 single [...] Read more.
Model experiments were performed on the interaction of swift heavy 220 MeV Xe ions with MgAl2O4 spinel crystal with (100), (110), and (111) planes. A computational analysis of the energy parameters of Xe ions in MgAl2O4 single crystal was performed, and an estimate of the ion range in the near-surface layer (14 μm) was provided. Optical absorption spectrum was analyzed using polarized light and EPR spectroscopy of initial and irradiated crystals. It has been established that at a fluence of 1013 cm−2 in a sample with an orientation plane (110), 35% more optically active F-type centers are formed. It has been shown that optically active centers V|Al–O are observed in an unusual, polarized beam. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 3318 KB  
Article
Non-Destructive Evaluation and Characterization of Transparent MgAl2O4 Spinel Ceramics via Moiré Interferometry
by Rahima Meziane, Salim Benaissa, Abdelbaki Cherouana, Sofiane Bouheroum, Khadidja Hoggas, Said Meguellati, Mohamed Hamidouche and Gilbert Fantozzi
Ceramics 2025, 8(4), 142; https://doi.org/10.3390/ceramics8040142 - 25 Nov 2025
Viewed by 112
Abstract
This work employs moiré interferometry to investigate the influence of sintering temperature and sandblasting on the optical and mechanical properties of magnesium aluminate spinel (MgAl2O4). S25CRX14 Spinel pellets were fabricated via Spark Plasma Sintering (SPS) at 1300 °C, 1350 [...] Read more.
This work employs moiré interferometry to investigate the influence of sintering temperature and sandblasting on the optical and mechanical properties of magnesium aluminate spinel (MgAl2O4). S25CRX14 Spinel pellets were fabricated via Spark Plasma Sintering (SPS) at 1300 °C, 1350 °C, and 1400 °C. The sintered samples were subsequently analyzed before and after sandblasting. Moiré interferometry, a non-destructive and contactless technique based on the superposition of tow linear transmission gratings, has proven particularly suitable for detecting micro-defects in transparent materials. The analysis of moiré fringes provided essential insights into the presence and size of defects, enabling accurate quality assessment without altering the samples. Its high spatial resolution, allowed the detection of even low-contrast defects. The results confirmed that the sintering temperature and sandblasting significantly influenced the mechanical and optical properties of the S25CRX14 spinel samples. The specimens sintered at 1350 °C exhibited the highest light transmission and the superior hardness. In contrast, the samples sintered at 1400 °C showed a notable degradation in their optical and mechanical properties. In conclusion, the pellets sintered at 1350 °C demonstrated the most favorable overall performance. This study confirms that moiré interferometry is a straightforward, accurate, and highly effective method for evaluating transparent ceramics, with very low implementation costs. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

51 pages, 13018 KB  
Review
Advances in Magnesia–Dolomite Refractory Materials: Properties, Emerging Technologies, and Industrial Applications: A Review
by Leonel Díaz-Tato, Luis Angel Iturralde Carrera, Jesús Fernando López-Perales, Marcos Aviles, Edén Amaral Rodríguez-Castellanos and Juvenal Rodríguez-Resendiz
Technologies 2025, 13(11), 523; https://doi.org/10.3390/technologies13110523 - 13 Nov 2025
Viewed by 612
Abstract
Magnesia-dolomite refractories have emerged as sustainable alternatives to traditional carbon- or chromium-containing linings in steelmaking and cement industries. Their outstanding thermochemical stability, high refractoriness, and strong basic slag compatibility make them suitable for converters, electric arc furnaces (EAF), and argon–oxygen decarburization (AOD) units. [...] Read more.
Magnesia-dolomite refractories have emerged as sustainable alternatives to traditional carbon- or chromium-containing linings in steelmaking and cement industries. Their outstanding thermochemical stability, high refractoriness, and strong basic slag compatibility make them suitable for converters, electric arc furnaces (EAF), and argon–oxygen decarburization (AOD) units. However, their practical application has long been constrained by hydration and thermal shock sensitivity associated with free CaO and open porosity. Recent advances, including optimized raw material purity, fused co-clinker synthesis, nano-additive incorporation (TiO2, MgAl2O4 spinel, FeAl2O4), and improved sintering strategies, have significantly enhanced density, mechanical strength, and hydration resistance. Emerging technologies such as co-sintered magnesia–dolomite composites and additive-assisted microstructural tailoring have enabled superior corrosion resistance and extended service life. This review provides a comprehensive analysis of physicochemical mechanisms, processing routes, and industrial performance of magnesia–dolomite refractories, with special emphasis on their contribution to technological innovation, decarbonization, and circular economy strategies in high-temperature industries. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

13 pages, 2047 KB  
Article
Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System
by Rafael I. Shakirzyanov, Yuriy A. Garanin, Malik E. Kaliyekperov, Sofiya A. Maznykh and Dilnaz K. Zhamikhanova
J. Compos. Sci. 2025, 9(10), 519; https://doi.org/10.3390/jcs9100519 - 29 Sep 2025
Viewed by 673
Abstract
ZrO2-MgO-Al2O3 ceramics, despite a long history of research, still attract the attention of researchers due to the high potential of their applications as refractories and matrices for metal ceramics. A unique composition combining high strength and temperature stability [...] Read more.
ZrO2-MgO-Al2O3 ceramics, despite a long history of research, still attract the attention of researchers due to the high potential of their applications as refractories and matrices for metal ceramics. A unique composition combining high strength and temperature stability is particularly in demand. In this paper, a comprehensive study of ceramics of the composition (90−x)·ZrO2-10·MgO-x·Al2O3 (x = 10–80 wt.%) obtained by solid-phase sintering with preliminary annealing is carried out. Preliminary annealing was used for the possible formation of metastable phases with outstanding mechanical properties. Using the X-ray diffraction method, it was found that most of the samples consist of monoclinic zirconium oxide, magnesium–aluminum spinel, and corundum phases. The exception is the sample with x = 10 wt.%, in which the main phase was a cubic modification of zirconium oxide. By formation this type of ZrO2 polymorph in the composition hardness and flexural strength significantly increased from 400 to 1380 and 50 to 210 MPa, respectively. The total porosity of ceramics under study lies in the range 6–28%. Using the scanning electron microscopy method, it was found that the phase composition significantly affects the morphology of the microstructure of the sintered bodies. Thus, for sintered ceramics with a high corundum content, the microstructure is characterized by high porosity and a large grain size. For the first time, by applying preliminary annealing, a new type of ternary ceramic ZrO2-MgO-Al2O3 was sintered with potentially outstanding mechanical properties. The presence of a stabilized zirconium oxide phase, stresses in the crystal lattice of the matrix phase, and the formation of cracks in the microstructure are the main factors influencing shrinkage, porosity, microhardness, and biaxial flexural strength. Full article
Show Figures

Graphical abstract

15 pages, 3751 KB  
Article
Local Structural Changes in High-Alumina, Low-Lithium Glass-Ceramics During Crystallization
by Minghan Li, Yan Pan, Shuguang Wei, Yanping Ma, Chuang Dong, Hongxun Hao and Hong Jiang
Nanomaterials 2025, 15(18), 1449; https://doi.org/10.3390/nano15181449 - 20 Sep 2025
Viewed by 800
Abstract
In this study, we investigate the phase transition process during high-alumina, low-lithium glass-ceramics (ZnO-MgO-Li2O-SiO2-Al2O3) crystallization. The differential scanning calorimetry and high-temperature X-ray diffraction results show that approximately 10 wt.% of (Zn, Mg)Al2O4 [...] Read more.
In this study, we investigate the phase transition process during high-alumina, low-lithium glass-ceramics (ZnO-MgO-Li2O-SiO2-Al2O3) crystallization. The differential scanning calorimetry and high-temperature X-ray diffraction results show that approximately 10 wt.% of (Zn, Mg)Al2O4 crystals precipitated when the heat treatment temperature reached 850 °C, indicating that a large number of nuclei had already formed during the earlier stages of heat treatment. Field emission transmission electron microscopy used to observe the microstructure of glass-ceramics after staged heat treatment revealed that cation migration occurred during the nucleation process. Zn and Mg aggregated around Al to form (Zn, Mg)Al2O4 nuclei, which provided sites for crystal growth. Moreover, high-valence Zr aggregated outside the glass network, leading to the formation of nanocrystals. Raman spectroscopy analysis of samples at different stages of crystallization revealed that during spinel precipitation, the Q3 and Q4 structural units in the glass network increased significantly, along with an increase in the number of bridging oxygens. Highly coordinated Al originally present in the network mainly participated in spinel nucleation, effectively suppressing the subsequent formation of LixAlxSi1−xO2, which eventually resulted in the successful preparation of glass-ceramics with (Zn, Mg)Al2O4 and ZrO2 as the main crystalline phases. The grains in this glass-ceramic are all nanocrystals. Its Vickers hardness and flexural strength can reach up to 875 Hv and 350 MPa, respectively, while the visible light transmittance of the glass-ceramic reaches 81.5%. This material shows potential for applications in touchscreen protection, aircraft and high-speed train windshields, and related fields. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

24 pages, 6589 KB  
Article
Beyond Fossil Fuels: The Role of V-Doped Hydrotalcites in n-Butane Oxidative Dehydrogenation for a Circular Economy
by Agnieszka Węgrzyn, Alicja Katarzyńska, Paweł Miśkowiec and Wacław Makowski
Catalysts 2025, 15(9), 841; https://doi.org/10.3390/catal15090841 - 2 Sep 2025
Viewed by 814
Abstract
This study explores the catalytic performance of V3+-modified Mg/Al hydrotalcite-derived materials in the oxidative dehydrogenation (ODH) of n-butane, compared with catalysts derived from pyrovanadate and decavanadate precursors. Different methods for preparing hydrotalcite-like materials were applied to obtain vanadium-containing Mg-Al mixed oxide [...] Read more.
This study explores the catalytic performance of V3+-modified Mg/Al hydrotalcite-derived materials in the oxidative dehydrogenation (ODH) of n-butane, compared with catalysts derived from pyrovanadate and decavanadate precursors. Different methods for preparing hydrotalcite-like materials were applied to obtain vanadium-containing Mg-Al mixed oxide catalysts for n-butane ODH. The hydrotalcite-like precursors were doped with vanadates (V5+) via ion exchange or co-precipitation or with V3+ cations incorporated into brucite-like layers. During calcination in air or argon flow, different vanadium-containing phases were obtained. Our findings demonstrate that V3+-doped hydrotalcites exhibit superior activity and selectivity toward the total C4H8 products, with enhanced selectivity for 1,3-butadiene. The highest n-butane conversion was observed for catalysts with an MgO structure and vanadium dispersed in the oxide matrix. A similar conversion level (~44%) was obtained for a spinel-like Mg2VO4 catalyst, but only a 15% level was found for the highly crystalline α-Mg2V2O7 catalyst. In contrast, the highest selectivities toward dehydrogenated products were observed for V3+-containing and α-Mg2V2O7 catalysts. NH3- and CO2-temperature programmed desorption (TPD) analyses showed that high basicity combined with low acidity favors the formation of butene isomers and 1,3-butadiene. This work highlights the strategic potential of tailoring vanadium speciation and hydrotalcite-based catalyst design for low-carbon chemical manufacturing, supporting the transition toward a circular economy. Full article
Show Figures

Graphical abstract

19 pages, 7059 KB  
Article
Chromium in Slag from SOEL Interconnects Remelting: Characterization and Recycling Potential
by Shine-Od Mongoljiibuu, Jeraldine Lastam, Ralf Ditscherlein, Doreen Ebert, Michael Müller and Urs A. Peuker
Minerals 2025, 15(9), 904; https://doi.org/10.3390/min15090904 - 26 Aug 2025
Viewed by 862
Abstract
The recycling of interconnects from solid oxide electrolyzer (SOEL) stacks is essential for closing material loops in green hydrogen systems. Since it is mostly made of high-quality stainless steel, remelting is the most practical recovery route, but it inevitably generates slag, where strategic [...] Read more.
The recycling of interconnects from solid oxide electrolyzer (SOEL) stacks is essential for closing material loops in green hydrogen systems. Since it is mostly made of high-quality stainless steel, remelting is the most practical recovery route, but it inevitably generates slag, where strategic elements like chromium (Cr) are retained. This study investigates the mineralogical and grain characteristics of slag from SOEL interconnect remelting, with an emphasis on Cr distribution and its recovery potential. A correlative approach was applied using X-ray diffraction (XRD), scanning electron microscopy-based mineral liberation Analysis (MLA), and X-ray computed tomography (XCT). Cr was primarily found in magnesiochromite Mg(Al,Cr)2O4 (~54 wt.% Cr), constituting only ~5 wt.% of the slag, while lower concentrations were also detected in monticellite and åkermanite. XCT revealed the macroscopic heterogeneity of the slag system, with metallic inclusions and pores concentrated near the metal–slag interface, indicating density-driven settling. Cr-rich spinels were fine-grained (x50,2 ≈ 55 µm), irregular in shape, and partially intergrown, presenting challenges for mechanical liberation and physical recovery. These features, combined with their compositional selectivity, suggest that Cr-rich spinels are promising candidates for future Engineered Artificial Mineral (EnAM) strategies aimed at enhancing selective recovery from slag. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

22 pages, 6898 KB  
Article
The Impact of Aluminum Doping on the Performance of MgV2O4 Spinel Cathodes for High-Rate Zinc-Ion Energy Storage
by He Lin, Zhiwen Wang and Yu Zhang
Molecules 2025, 30(13), 2833; https://doi.org/10.3390/molecules30132833 - 1 Jul 2025
Viewed by 925
Abstract
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, [...] Read more.
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, which enhanced the material’s structural stability and electrical conductivity. The doping of Al3+ mitigates the electrostatic interactions between Zn2+ ions and the cathode, thereby improving ion diffusion and facilitating efficient charge/discharge processes. While pseudocapacitive behavior plays a dominant role in fast charge storage, the diffusion of Zn2+ within the bulk material remains crucial for long-term performance and stability. Our findings demonstrate that Al-MgV2O4 exhibits enhanced Zn2+ diffusion kinetics and robust structural integrity under high-rate cycling conditions, contributing to its high electrochemical performance. The Al-MgVO cathode retains a capacity of 254.3 mAh g−1 at a high current density of 10 A g−1 after 1000 cycles (93.6% retention), and 186.8 mAh g−1 at 20 A g−1 after 2000 cycles (90.2% retention). These improvements, driven by enhanced bulk diffusion and the stabilization of the crystal framework through Al3+ doping, make it a promising candidate for high-rate energy storage applications. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

22 pages, 11955 KB  
Article
Coronitic Associations at Gabrish in the Kovdozero Layered Complex in the Southern Part of the Lapland—Belomorian Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Robert F. Martin, Larisa P. Barkova and Vladimir N. Korolyuk
Minerals 2025, 15(6), 565; https://doi.org/10.3390/min15060565 - 26 May 2025
Viewed by 572
Abstract
The Paleoproterozoic Kovdozero complex, one of largest in the Fennoscandian Shield, was emplaced in a peripheral region of the SB–TB–LBB (Serpentinite Belt–Tulppio Belt–Lapland–Belomorian Belt) megastructure. Coronitic rocks of ultrabasic–basic compositions, investigated along a cross-section in the Gabrish area, are members of a cryptically [...] Read more.
The Paleoproterozoic Kovdozero complex, one of largest in the Fennoscandian Shield, was emplaced in a peripheral region of the SB–TB–LBB (Serpentinite Belt–Tulppio Belt–Lapland–Belomorian Belt) megastructure. Coronitic rocks of ultrabasic–basic compositions, investigated along a cross-section in the Gabrish area, are members of a cryptically layered series. They crystallized from the northern margin inward, as indicated by variations in mineral compositions and geochemical trends. Unsteady conditions of crystallization arose because of uneven cooling of the shallowly emplaced complex. Rapid drops in temperature likely caused the forced deposition of different generations of variously textured pyroxenes and chromian spinel or resulted in the unique development of narrow recurrent rims of orthopyroxene hosted by olivine. The unstable conditions of crystallization are expressed by (1) textural diversity, (2) broad variations in values of Mg#, and (3) virtual presence of double trends of Mg# as a function of distance. The coronitic textures are intimately associated with interstitial grains of plagioclase (An≤65), also present as relics in a rim of calcic amphibole. The coronas are results of (1) rapid cooling leading to unsteady conditions of crystallization, which caused the sudden cessation of olivine crystallization and the development of an orthopyroxene rim on olivine and (2) an intrinsic enrichment in H2O (and essential Cl in scapolite) coupled with a progressive accumulation of Al and alkalis, giving rise to fluid-rich environments in the intercumulus melt at advances stages of crystallization. These processes were followed by deuteric composite rims of calcic amphibole and reaction of fluid with early rims or grains of pyroxenes and late plagioclase. The coronitic sequences Ol → Opx → Cpx → calcic Amp → Pl (plus Qz + Mca) observed at a microscopic scale reproduce, in miniature, the normal order of crystallization in an ultrabasic–basic complex. A composite orthopyroxene + calcic amphibole corona resembles some rocks in complexes of the Serpentinite Belt. The prominence of such coronas may well be characteristic of the crystallization of komatiite-derived melts. Full article
Show Figures

Figure 1

14 pages, 4358 KB  
Article
Clarification of Clove Basil Extract Using Spinel Hollow Fiber Membranes
by Kristopher Rodrigues Dorneles, Guilherme Guimarães Ascendino, Vicelma Luiz Cardoso and Miria Hespanhol Miranda Reis
Ceramics 2025, 8(2), 57; https://doi.org/10.3390/ceramics8020057 - 16 May 2025
Viewed by 777
Abstract
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at [...] Read more.
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at 1350 °C, combining alumina and dolomite as raw materials. The calcination of the powder materials at 1350 °C resulted in the spinel phase formation, as indicated by the XRD analyses. The spinel hollow fiber membrane presented a hydrophilic surface (water contact angle of 74°), moderate roughness (144.31 ± 12.93 nm), and suitable mechanical strength. The ceramic membrane demonstrated a water permeability of 35.28 ± 2.46 L h−1 m−2 bar−1 and a final permeate flux of 9.22 ± 1.64 L h−1 m−2 for filtration of clove basil extract at 1.0 bar. Fouling analysis identified cake formation as the dominant mechanism for flux decline. The membrane retained 44% of the total phenolic compounds and reduced turbidity by 60%, while preserving significant antioxidant capacity in the permeate. The results highlight the potential of spinel-based hollow fiber membranes as a cost-effective and efficient solution for clarifying bioactive plant extracts, offering enhanced mechanical properties and lower sintering temperatures compared to conventional alumina membranes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

28 pages, 17558 KB  
Article
Machine-Learning-Assisted Multi-Element Optimization of Mechanical Properties in Spinel Refractory Materials
by Zhiyuan Chen, Daoyuan Yang, Xianghui Li, Jinfeng Li, Huiyu Yuan and Junyan Cui
Materials 2025, 18(8), 1719; https://doi.org/10.3390/ma18081719 - 9 Apr 2025
Viewed by 950
Abstract
Using machine learning models, this study innovatively introduces multi-element compositions to optimize the performance of spinel refractories. A total of 1120 spinel samples were fabricated at 1600 °C for 2 h, and an experimental database containing 112 data points was constructed. High-throughput performance [...] Read more.
Using machine learning models, this study innovatively introduces multi-element compositions to optimize the performance of spinel refractories. A total of 1120 spinel samples were fabricated at 1600 °C for 2 h, and an experimental database containing 112 data points was constructed. High-throughput performance predictions and experimental verifications were conducted, identifying the sample with the highest hardness, (Al2Fe0.25Zn0.25Mg0.25Mn0.25)O4 (1770.6 ± 79.1 HV1, 3.35 times that of MgAl2O4), and the highest flexural strength, (Al2Cr0.5Zn0.1Mg0.2Mn0.2)O4 (161.2 ± 9.7 MPa, 1.4 times that of MgAl2O4). Further analysis of phase composition and microstructure shows that the mechanism of hardness enhancement is mainly the solid solution strengthening of multi-element doping, the energy dissipation of the large-grain layered structure, and the reinforcement of the zigzag grain boundary. In addition to solid solution strengthening and a compact low-pore structure, the mechanism of improving bending strength also includes second-phase strengthening and phase concentration gradient distribution. This method provides a promising way to optimize the performance of refractory materials. Full article
Show Figures

Figure 1

30 pages, 2870 KB  
Article
Thermal Expansion of Electrofused MgO-Based Spinel Systems Containing Fe2O3, Al2O3-Fe2O3, Al2O3-Cr2O3-Fe2O3 and Al2O3-NiO-Fe2O3
by Tilo Zienert, Otávio H. Borges, Victor C. Pandolfelli and Christos G. Aneziris
Crystals 2025, 15(3), 220; https://doi.org/10.3390/cryst15030220 - 25 Feb 2025
Cited by 2 | Viewed by 1135
Abstract
Magnesia-spinel multicomponent materials have been used as refractories for a long time. In addition to a few binary systems, the influence of spinel phases on the thermal expansion (α) of MgO or the resulting compound has not been studied so far. [...] Read more.
Magnesia-spinel multicomponent materials have been used as refractories for a long time. In addition to a few binary systems, the influence of spinel phases on the thermal expansion (α) of MgO or the resulting compound has not been studied so far. As α is critical for refractories in application, this work investigates the thermal expansion of complex MgO-based spinel systems using X-ray diffraction (XRD) in combination with Rietveld refinement in the temperature range between 30 °C and 1200 °C. All studied periclase solid solutions, in contact with spinels of the systems Mg1.01(Al0.23Cr1.64Fe0.13)O4, Fe3O4MgFe2O4, NiFe2O4–NiAl2O4, MgAl2O4–MgFe2O4, Fe3O4–FeAl2O4 and Fe3O4·NiFe2O4·2MgAl2O4 showed α trends below plain MgO, or even decreasing values above 1000 °C. Many spinels showed large negative thermal expansion coefficients. It was found that the structural change in spinels is constrained, leading to a common analytical expression to calculate the lattice parameter of spinels with temperature, which was used to study the nature of the investigated spinels in more detail. The work highlights that Cr-free MgO-spinel systems show similar or even better high-temperature behaviour than commonly used magnesia–chrome aggregates. Full article
Show Figures

Figure 1

24 pages, 4015 KB  
Review
Speciation of 3d Elements in Spinel Versus Corundum: Elucidating the Interplay Between Ligand Field, Structural Dissimilarities and Processing Conditions
by Adrian Goldstein and Alessio Zandonà
Ceramics 2025, 8(1), 16; https://doi.org/10.3390/ceramics8010016 - 19 Feb 2025
Cited by 4 | Viewed by 1309
Abstract
The simultaneous analysis of optical and electronic paramagnetic resonance spectra of all 3d metals, doped into transparent α-Al2O3 and MgAl2O4 spinel, was effectuated with a view of establishing the speciation pattern of the dopants. The examination of [...] Read more.
The simultaneous analysis of optical and electronic paramagnetic resonance spectra of all 3d metals, doped into transparent α-Al2O3 and MgAl2O4 spinel, was effectuated with a view of establishing the speciation pattern of the dopants. The examination of these patterns enabled the revelation of certain regularities (rules) affecting the correlation between the physical factors controlling the process and speciation patterns. It was observed that structural dissimilarities between the lattices significantly affected the correlation. Thus, the spinel lattice was found to impose the accommodation of the dopants as 2+ cations replacing native Mg2+ ions located in tetrahedral sites, with the process concerning only the late 3d elements. The difference in behavior between the early and late 3d elements is mostly caused by the increase in ionization potential along the series. In alumina, the dopants are accommodated as 3+ cations in octahedral sites; 6-coordinated 2+ cation stabilization is feasible but requires extremely reductive conditions for late 3d elements. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Figure 1

18 pages, 8358 KB  
Article
Corrosion Behavior and Mechanism of High-Aluminum Inconel 625 in Chlorinated Salts
by Ying Wei, Junjia Cao, Yuehong Zheng, Haicun Yu, Penghui Yang and Peiqing La
Crystals 2025, 15(2), 144; https://doi.org/10.3390/cryst15020144 - 29 Jan 2025
Cited by 5 | Viewed by 2159
Abstract
Concentrated solar power plant (CSP) technology holds significant application value in the renewable energy sector for converting solar radiation into thermal and electrical energy. As a heat storage medium for next-generation solar thermal power stations, chloride salts exhibit strong corrosive effects on structural [...] Read more.
Concentrated solar power plant (CSP) technology holds significant application value in the renewable energy sector for converting solar radiation into thermal and electrical energy. As a heat storage medium for next-generation solar thermal power stations, chloride salts exhibit strong corrosive effects on structural components. To enhance corrosion resistance of the heated body in molten salt environments, Inconel 625 is modified by incorporating aluminum, which facilitates the formation of a protective oxide film. In this study, High-Aluminum Inconel 625, after cold rolling and solution treatment, was immersed in a NaCl-KCl-MgCl2 eutectic chloride melt at 650 °C for 200 h. Post-corrosion analysis revealed the formation of an alumina layer on the surface, effectively mitigating corrosion. Increased aluminum content resulted in thicker alumina layers and the formation of oxidation products, such as Cr2O3, Fe2O3, MoO2, and MgCr2O4 spinel structures, significantly enhancing the alloy’s corrosion resistance. The Inconel 625 cold-rolled plate with 5.31 wt% Al exhibited the best corrosion resistance (3510 μm/year), making it a promising candidate for use in next-generation CSP heat storage and exchange components. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

14 pages, 7144 KB  
Article
The Influence of Mg Doping in α-Al2O3 Crystals Investigated with First-Principles Calculations and Experiment
by Yan Zeng, Haijun Fan, Haibo Guo, Kaiyong Tang, Zungang Wang, Siyuan Zhang, Mo Zhou, Li Fu and He Feng
Materials 2025, 18(2), 407; https://doi.org/10.3390/ma18020407 - 16 Jan 2025
Cited by 1 | Viewed by 1980
Abstract
The influence of Mg doping in α-Al2O3 crystals is investigated in this article by first-principles calculations and formation energies, density of states, and computed absorption spectra. Three models related to Mg2+ substituting for Al3+ doping structures were constructed, [...] Read more.
The influence of Mg doping in α-Al2O3 crystals is investigated in this article by first-principles calculations and formation energies, density of states, and computed absorption spectra. Three models related to Mg2+ substituting for Al3+ doping structures were constructed, as well as spinel structure models with varying aluminum-magnesium ratios. The formation energy calculations confirmed the rationality of the MgAlVO model, which means that Mg substitutional doping incorporating oxygen vacancies is most likely to form in crystals. The combined action of magnesium and oxygen vacancies introduced new defect energy levels in the bandgap. The calculated absorption spectra of the MgAlVO and Mg-rich spinel structures exhibited various color centers. The experimental absorption spectra and thermoluminescence characteristics of α-Al2O3:Mg and alumina-magnesium (Al-Mg) spinel crystal samples were tested. The thermoluminescence peak of the Al-Mg spinel was significantly stronger than that of the α-Al2O3:Mg crystal. The consistency between the model-calculated absorption spectra and the experimental results confirmed the theoretical predictions. Based on the experimental and computational results, the influence of Mg2+ substitutional doping in α-Al2O3 and the impact of the locally Mg-rich spinel on the optical and radiation performance of α-Al2O3:Mg crystals are elucidated. Full article
Show Figures

Figure 1

Back to TopTop