Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Macrosiphum euphorbiae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2600 KB  
Article
Citrus Aphids in Algarve Region (Portugal): Species, Hosts, and Biological Control
by Paulo Eduardo Branco Paiva, Luís Mascarenhas Neto, Natália Tomás Marques, Beatriz Zarcos Duarte and Amílcar Marreiros Duarte
Ecologies 2024, 5(1), 101-115; https://doi.org/10.3390/ecologies5010007 - 19 Feb 2024
Cited by 5 | Viewed by 3397
Abstract
Aphids affect citrus by causing leaf deformations and reducing fruit production. Additionally, aphids are a great concern due to their ability to transmit Citrus tristeza virus (CTV), the cause of tristeza, one of the main citrus diseases. In the last four years, citrus [...] Read more.
Aphids affect citrus by causing leaf deformations and reducing fruit production. Additionally, aphids are a great concern due to their ability to transmit Citrus tristeza virus (CTV), the cause of tristeza, one of the main citrus diseases. In the last four years, citrus orchards in the south of Portugal (Algarve region) were sampled for aphid species identification and counting. Aphis spiraecola was the most abundant species, representing more than 80% of all identified aphids, and the damage (leaf deformation) it causes was directly proportional to its density. A. gossypii was the second most common species, followed by A. aurantii and Macrosiphum euphorbiae. The number of aphids in nymph stages was predominant over the adult stages (both wingless and winged) in all species. A. citricidus, the most efficient CTV vector, was not detected. The largest populations of A. spiraecola were observed in lemon and orange trees during spring (>100 individuals per shoot), with great damage observed in orange, lemon, and mandarin trees. A. gossypii was observed mainly in mandarin and tangor trees. There was a low activity of natural biological control agents, with the parasitism of A. spiraecola by Lysiphlebus spp. and Binodoxys spp. ranging from 0.3 to 1.5%. The numerical ratio ranged from 150 to 440 aphids per predator, and among these, syrphids were the most abundant, followed by lacewings and coccinellids (Scymnus). Full article
Show Figures

Figure 1

13 pages, 2477 KB  
Article
The Spatiotemporal Distribution, Abundance, and Seasonal Dynamics of Cotton-Infesting Aphids in the Southern U.S.
by John W. Mahas, Jessica B. Mahas, Charles Ray, Adam Kesheimer, Todd D. Steury, Sophia R. Conzemius, Whitney Crow, Jeffrey Gore, Jeremy K. Greene, George G. Kennedy, David Kerns, Sean Malone, Silvana Paula-Moraes, Phillip Roberts, Scott D. Stewart, Sally Taylor, Michael Toews and Alana L. Jacobson
Insects 2023, 14(7), 639; https://doi.org/10.3390/insects14070639 - 15 Jul 2023
Cited by 7 | Viewed by 2600
Abstract
Cotton leafroll dwarf virus (CLRDV) is an emerging aphid-borne pathogen infecting cotton, Gossypium hirsutum L., in the southern United States (U.S.). The cotton aphid, Aphis gossypii Glover, infests cotton annually and is the only known vector to transmit CLRDV to cotton. Seven other [...] Read more.
Cotton leafroll dwarf virus (CLRDV) is an emerging aphid-borne pathogen infecting cotton, Gossypium hirsutum L., in the southern United States (U.S.). The cotton aphid, Aphis gossypii Glover, infests cotton annually and is the only known vector to transmit CLRDV to cotton. Seven other species have been reported to feed on, but not often infest, cotton: Protaphis middletonii Thomas, Aphis craccivora Koch, Aphis fabae Scopoli, Macrosiphum euphorbiae Thomas, Myzus persicae Sulzer, Rhopalosiphum rufiabdominale Sasaki, and Smynthurodes betae Westwood. These seven have not been studied in cotton, but due to their potential epidemiological importance, an understanding of the intra- and inter-annual variations of these species is needed. In 2020 and 2021, aphids were monitored from North Carolina to Texas using pan traps around cotton fields. All of the species known to infest cotton, excluding A. fabae, were detected in this study. Protaphis middletonii and A. gossypii were the most abundant species identified. The five other species of aphids captured were consistently low throughout the study and, with the exception of R. rufiabdominale, were not detected at all locations. The abundance, distribution, and seasonal dynamics of cotton-infesting aphids across the southern U.S. are discussed. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 4866 KB  
Article
Seasonal Dynamics of Aphid Flights and Cotton Leafroll Dwarf Virus Spread in Alabama
by Jessica B. Mahas, Charles Ray, Adam Kesheimer, Kassie Conner and Alana L. Jacobson
Insects 2023, 14(7), 604; https://doi.org/10.3390/insects14070604 - 4 Jul 2023
Cited by 10 | Viewed by 2403 | Correction
Abstract
Cotton leafroll dwarf virus (CLRDV) is an introduced Polerovirus (Family: Solemoviridae) of cotton, Gossypium hirsutum L., in the U.S. The only vector known to transmit this virus to cotton is the cotton aphid, Aphis gossypii Glover; however, there are seven other species of [...] Read more.
Cotton leafroll dwarf virus (CLRDV) is an introduced Polerovirus (Family: Solemoviridae) of cotton, Gossypium hirsutum L., in the U.S. The only vector known to transmit this virus to cotton is the cotton aphid, Aphis gossypii Glover; however, there are seven other species of aphids (Hemiptera: Aphididae) reported to colonize cotton in the southeastern U.S.: Protaphis middletonii (Thomas), Rhopalosiphum rufiabdominale (Sasaki), Aphis craccivora Koch, Macrosiphum euphorbiae Thomas, Myzus persicae (Sulzer), Smythurodes betae Westwood, and Aphis fabae Scopoli. Little to no information is available on annual population dynamics of these species in the southeastern U.S. The timing of CLRDV spread to cotton plantings is also unknown. The objective of this study was to monitor the population dynamics of eight cotton-feeding aphid species concurrent with the spread of CLRDV at three different locations in Alabama. Aphids were monitored weekly for two years with yellow pan traps, and sentinel plants were deployed weekly to monitor CLRDV spread throughout the cotton-growing season. During the two years, most CLRDV spread at all locations occurred when A. gossypii was actively dispersing in the field. Early season spread at sites in south and central Alabama, when A. gossypii was not abundant, suggests additional aphid vectors are possible. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 4241 KB  
Article
The Effects of Cucumber Mosaic Virus and Its 2a and 2b Proteins on Interactions of Tomato Plants with the Aphid Vectors Myzus persicae and Macrosiphum euphorbiae
by Warren Arinaitwe, Alex Guyon, Trisna D. Tungadi, Nik J. Cunniffe, Sun-Ju Rhee, Amjad Khalaf, Netsai M. Mhlanga, Adrienne E. Pate, Alex M. Murphy and John P. Carr
Viruses 2022, 14(8), 1703; https://doi.org/10.3390/v14081703 - 1 Aug 2022
Cited by 9 | Viewed by 4836
Abstract
Cucumber mosaic virus (CMV), a major tomato pathogen, is aphid-vectored in the non-persistent manner. We investigated if CMV-induced volatile organic compounds (VOCs) or other virus-induced cues alter aphid–tomato interactions. Y-tube olfactometry showed that VOCs emitted by plants infected with CMV (strain Fny) attracted [...] Read more.
Cucumber mosaic virus (CMV), a major tomato pathogen, is aphid-vectored in the non-persistent manner. We investigated if CMV-induced volatile organic compounds (VOCs) or other virus-induced cues alter aphid–tomato interactions. Y-tube olfactometry showed that VOCs emitted by plants infected with CMV (strain Fny) attracted generalist (Myzus persicae) and Solanaceae specialist (Macrosiphum euphorbiae) aphids. Myzus persicae preferred settling on infected plants (3 days post-inoculation: dpi) at 1h post-release, but at 9 and 21 dpi, aphids preferentially settled on mock-inoculated plants. Macrosiphum euphorbiae showed no strong preference for mock-inoculated versus infected plants at 3 dpi but settled preferentially on mock-inoculated plants at 9 and 21 dpi. In darkness aphids showed no settling or migration bias towards either mock-inoculated or infected plants. However, tomato VOC blends differed in light and darkness, suggesting aphids respond to a complex mix of olfactory, visual, and other cues influenced by infection. The LS-CMV strain induced no changes in aphid–plant interactions. Experiments using inter-strain recombinant and pseudorecombinant viruses showed that the Fny-CMV 2a and 2b proteins modified tomato interactions with Macrosiphum euphorbiae and Myzus persicae, respectively. The defence signal salicylic acid prevents excessive CMV-induced damage to tomato plants but is not involved in CMV-induced changes in aphid–plant interactions. Full article
(This article belongs to the Special Issue Plant Viruses: Pirates of Cellular Pathways)
Show Figures

Figure 1

8 pages, 1576 KB  
Article
The Effect of Wind Speed on Male Potato Aphid, Macrosiphum euphorbiae, Responses to Primary Host Plant Volatiles and Female Sex Pheromone
by W. Marie Alexander, Benjamin D. Rubin and Jeremy N. McNeil
Insects 2022, 13(4), 312; https://doi.org/10.3390/insects13040312 - 23 Mar 2022
Viewed by 2733
Abstract
In fall, alate males of the potato aphid, Macrosiphum euphorbiae (Thomas), migrate from their summer (secondary) host plants, such as potatoes, to primary host plants, such as roses, where they mate with wingless oviparae who produce the overwintering egg stage. Males are weak [...] Read more.
In fall, alate males of the potato aphid, Macrosiphum euphorbiae (Thomas), migrate from their summer (secondary) host plants, such as potatoes, to primary host plants, such as roses, where they mate with wingless oviparae who produce the overwintering egg stage. Males are weak fliers and generally walk towards a pheromone source under windy conditions, so we tested the hypothesis that upwind walking behaviour in response to wind velocity would be affected by the volatile cues present. We compared male responses to the odour of a rugosa rose cutting alone and to the combination of host plant volatiles and the female sex pheromone under a range of wind speeds in a laboratory walking bioassay. The proportion of males responding decreased as the wind speed increased, but at all wind velocities, the responses to the combined odours were higher than to the host plant alone. However, at any given wind velocity, the speed at which responding aphids moved was not influenced by the odour source. These findings support the idea that host plant volatiles serve as long-distance cues for males and that the female sex pheromone is used once on the host plant. Full article
(This article belongs to the Special Issue Ecology of Sex and Sexual Communication in Insects)
Show Figures

Figure 1

20 pages, 2740 KB  
Article
Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests
by Martina Sinno, Marta Ranesi, Ilaria Di Lelio, Giuseppina Iacomino, Andrea Becchimanzi, Eleonora Barra, Donata Molisso, Francesco Pennacchio, Maria Cristina Digilio, Stefania Vitale, David Turrà, Vili Harizanova, Matteo Lorito and Sheridan Lois Woo
Pathogens 2021, 10(10), 1242; https://doi.org/10.3390/pathogens10101242 - 26 Sep 2021
Cited by 60 | Viewed by 7823
Abstract
Endophytic fungi (EF) can enhance both plant growth and defense barriers against pests and pathogens, contributing to the reduction of chemical pesticides and fertilizers use in agriculture. Beauveria bassiana is an entomopathogenic fungus showing endophytism in several crops, often associated with a good [...] Read more.
Endophytic fungi (EF) can enhance both plant growth and defense barriers against pests and pathogens, contributing to the reduction of chemical pesticides and fertilizers use in agriculture. Beauveria bassiana is an entomopathogenic fungus showing endophytism in several crops, often associated with a good capacity to limit the development of pests and disease agents. However, the diversity of the protective efficacy and plant response to different strains can be remarkable and needs to be carefully assessed for the successful and predictable use of these beneficial microorganisms. This study aims to select B. bassiana strains able to colonize tomato plants as endophytes as well as to control two important disease agents, Botrytis cinerea and Alternaria alternata, and the pest aphid, Macrosiphum euphorbiae. Nine wild-type isolates and one commercial strain were screened for endophytism, then further characterized for plant-growth promotion plus inhibition of disease development and pest infestation. Four isolates proved to have a good control activity against the biotic stressors tested, but only Bb716 was also able to promote plant growth. This work provides a simple workflow for the selection of beneficial EF, paving the way towards more effective use of B. bassiana in Integrate Pest Management (IPM) of tomato. Full article
(This article belongs to the Special Issue Beneficial Plant–Fungal Interactions)
Show Figures

Figure 1

14 pages, 1433 KB  
Article
Biopesticide Evaluation from Lab to Greenhouse Scale of Essential Oils Used against Macrosiphum euphorbiae
by Lana Dunan, Tara Malanga, Philippe Bearez, Sylvain Benhamou, Lucie S. Monticelli, Nicolas Desneux, Thomas Michel and Anne-Violette Lavoir
Agriculture 2021, 11(9), 867; https://doi.org/10.3390/agriculture11090867 - 10 Sep 2021
Cited by 16 | Viewed by 5421
Abstract
Aphids are recognized as a major threat to economically important crops. Their control is predominantly based on synthetic insecticides that are detrimental to human health and the environment. Botanical pesticides based on essential oils (EOs) are a promising alternative. In this study, the [...] Read more.
Aphids are recognized as a major threat to economically important crops. Their control is predominantly based on synthetic insecticides that are detrimental to human health and the environment. Botanical pesticides based on essential oils (EOs) are a promising alternative. In this study, the entomotoxicity of green anise and fennel EO fumigation was tested on the potato aphid Macrosiphum euphorbiae. Three different settings of increasing scale were considered (leaflet, whole plant and greenhouse) to appraise the consistency of EO impact from controlled laboratory to greenhouse production conditions. LC50 values for green anise and fennel were 6.6 μl L−1air and 12.2 μl L−1air, respectively, based on dose-response curves in leaflet experiments but fennel EO induced phytotoxicity. EO efficiency was confirmed at the whole-plant scale. In the greenhouse experiment, fennel EO exhibited greater efficiency than at the laboratory scale equaling green anise EO efficiency but both EOs showed delayed phytotoxicity, illustrating the importance of long-term monitoring. The present study revealed the ability of both EOs to control M. euphorbiae populations under greenhouse conditions and hinted at the importance of assessing EO efficiency in realistic agronomic conditions (e.g., under the fluctuating environmental conditions usually occurring in greenhouses). Full article
Show Figures

Figure 1

18 pages, 1048 KB  
Article
Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species
by Luis Cruces, Eduardo de la Peña and Patrick De Clercq
Plants 2021, 10(9), 1788; https://doi.org/10.3390/plants10091788 - 27 Aug 2021
Cited by 20 | Viewed by 5118
Abstract
During the last few years, quinoa, a traditional Andean crop, has been cultivated at low elevations where pest pressure is high and farmers resort to intensive use of insecticides. This field study investigated the impact of four insecticides (cypermethrin, imidacloprid, teflubenzuron and emamectin [...] Read more.
During the last few years, quinoa, a traditional Andean crop, has been cultivated at low elevations where pest pressure is high and farmers resort to intensive use of insecticides. This field study investigated the impact of four insecticides (cypermethrin, imidacloprid, teflubenzuron and emamectin benzoate) on insect pests of quinoa and their side effects on the arthropod community at the coastal level of Peru, by analysing the species composition, species diversity and population density. The arthropod community was examined with pitfall traps (for ground dwelling species), plant samplings (for pests and their natural enemies that inhabit the crop), and yellow pan traps (to catch flying insects). The results demonstrated that Macrosiphum euphorbiae, Frankliniella occidentalis and Spoladea recurvalis were efficiently controlled by cypermethrin and imidacloprid; the latter compound also showed long-term effects on Nysius simulans. Teflubenzuron and emamectin benzoate proved to be efficient to control S. recurvalis. Imidacloprid had the strongest adverse effects on the arthropod community in terms of species diversity, species composition and natural enemy density as compared to the other insecticides. Findings of this study may assist farmers intending to grow quinoa at the coastal level in selecting the most appropriate insecticides under an integrated pest management approach. Full article
Show Figures

Figure 1

17 pages, 1281 KB  
Article
Seasonal Phenology of the Major Insect Pests of Quinoa (Chenopodium quinoa Willd.) and Their Natural Enemies in a Traditional Zone and Two New Production Zones of Peru
by Luis Cruces, Eduardo de la Peña and Patrick De Clercq
Agriculture 2020, 10(12), 644; https://doi.org/10.3390/agriculture10120644 - 18 Dec 2020
Cited by 13 | Viewed by 5322
Abstract
Over the last decade, the sown area of quinoa (Chenopodium quinoa Willd.) has been increasingly expanding in Peru, and new production fields have emerged, stretching from the Andes to coastal areas. The fields at low altitudes have the potential to produce higher [...] Read more.
Over the last decade, the sown area of quinoa (Chenopodium quinoa Willd.) has been increasingly expanding in Peru, and new production fields have emerged, stretching from the Andes to coastal areas. The fields at low altitudes have the potential to produce higher yields than those in the highlands. This study investigated the occurrence of insect pests and the natural enemies of quinoa in a traditional production zone, San Lorenzo (in the Andes), and in two new zones at lower altitudes, La Molina (on the coast) and Majes (in the “Maritime Yunga” ecoregion), by plant sampling and pitfall trapping. Our data indicated that the pest pressure in quinoa was higher at lower elevations than in the highlands. The major insect pest infesting quinoa at high densities in San Lorenzo was Eurysacca melanocampta; in La Molina, the major pests were E. melanocampta, Macrosiphum euphorbiae and Liriomyza huidobrensis; and in Majes, Frankliniella occidentalis was the most abundant pest. The natural enemy complex played an important role in controlling M. euphorbiae and L. huidobrensis by preventing pest resurgence. The findings of this study may assist quinoa producers (from the Andes and from regions at lower altitudes) in establishing better farming practices in the framework of integrated pest management. Full article
(This article belongs to the Special Issue Integrated Pest Management of Field Crops)
Show Figures

Figure 1

11 pages, 572 KB  
Article
The Role of Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae) as a Potential Dispersive Agent of Noctuid Baculoviruses
by Oscar Giovanni Gutiérrez-Cárdenas, Ángeles Adán, Inés Beperet, Pilar Medina, Primitivo Caballero and Agustín Garzón
Insects 2020, 11(11), 760; https://doi.org/10.3390/insects11110760 - 5 Nov 2020
Cited by 5 | Viewed by 5527
Abstract
Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses [...] Read more.
Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The microscopic examination of predator’s excreta (larval drops and meconia) after the ingestion of BV-infected S. exigua revealed the presence of viral occlusion bodies (OBs). The reinfection of S. exigua larvae with BVs-contaminated excreta by using OBs water suspensions or by direct application both yielded high mortality values but different speed-of-kill results. Meconia killed before in suspensions due to their higher viral load and larval excretion drops did so in direct application due to their liquid nature and their easiness of consumption. The prey-mediated ingestion of SeMNPV and AcMNPV triggered slight effects in C. carnea, which were probably derived from the food nutritional quality. Chrysoperla carnea larvae did not discriminate between healthy and BV-infected S. exigua, while a preference was shown for S. exigua (healthy or infected) vs. Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

13 pages, 2143 KB  
Article
Can Winged Aphid Abundance Be a Predictor of Cucurbit Aphid-Borne Yellows Virus Epidemics in Melon Crop?
by Alexandra Schoeny, Loup Rimbaud, Patrick Gognalons, Grégory Girardot, Pauline Millot, Karine Nozeran, Catherine Wipf-Scheibel and Hervé Lecoq
Viruses 2020, 12(9), 911; https://doi.org/10.3390/v12090911 - 20 Aug 2020
Cited by 6 | Viewed by 3346
Abstract
Aphid-borne viruses are frequent yield-limiting pathogens in open field vegetable crops. In the absence of curative methods, virus control relies exclusively on measures limiting virus introduction and spread. The efficiency of control measures may greatly benefit from an accurate knowledge of epidemic drivers, [...] Read more.
Aphid-borne viruses are frequent yield-limiting pathogens in open field vegetable crops. In the absence of curative methods, virus control relies exclusively on measures limiting virus introduction and spread. The efficiency of control measures may greatly benefit from an accurate knowledge of epidemic drivers, in particular those linked with aphid vectors. Field experiments were conducted in southeastern France between 2010 and 2019 to investigate the relationship between the epidemics of cucurbit aphid-borne yellows virus (CABYV) and aphid vector abundance. Winged aphids visiting melon crops were sampled daily to assess the abundance of CABYV vectors (Aphis gossypii, Macrosiphum euphorbiae and Myzus persicae) and CABYV was monitored weekly by DAS-ELISA. Epidemic temporal progress curves were successfully described by logistic models. A systematic search for correlations was undertaken between virus variables including parameters µ (inflection point of the logistic curve) and γ (maximum incidence) and aphid variables computed by aggregating abundances on periods relative either to the planting date, or to the epidemic peak. The abundance of A. gossypii during the first two weeks after planting was found to be a good predictor of CABYV dynamics, suggesting that an early control of this aphid species could mitigate the onset and progress of CABYV epidemics in melon crops. Full article
(This article belongs to the Special Issue Plant Virus Emergence)
Show Figures

Figure 1

17 pages, 1334 KB  
Article
Phenolic Fingerprinting, Antioxidant, and Deterrent Potentials of Persicaria maculosa Extracts
by Luisa Quesada-Romero, Carlos Fernández-Galleguillos, Jan Bergmann, María-Eugenia Amorós, Felipe Jiménez-Aspee, Andrés González, Mario Simirgiotis and Carmen Rossini
Molecules 2020, 25(13), 3054; https://doi.org/10.3390/molecules25133054 - 3 Jul 2020
Cited by 10 | Viewed by 4442
Abstract
Persicaria maculosa (Polygonaceae) (known as lady’s thumb) is an annual morphologically variable weed that is widely distributed in Chile. The purpose of this study was to investigate the antifeedant potential of methanolic (MeOH), ethanolic (EtOH), and dichloromethane (DCM) extracts from the aerial parts [...] Read more.
Persicaria maculosa (Polygonaceae) (known as lady’s thumb) is an annual morphologically variable weed that is widely distributed in Chile. The purpose of this study was to investigate the antifeedant potential of methanolic (MeOH), ethanolic (EtOH), and dichloromethane (DCM) extracts from the aerial parts of this plant collected in the Valparaíso and Curicó provinces (Chile) and relate this activity to the antioxidant capacity and the presence of phenolic compounds in the extracts. A phenolic profile based on HPLC-ESI-MS/MS allowed the identification of 26 phenolic compounds, most of them glycosyl derivatives of isorhamnetin, quercetin, and kaempferol. In addition, the total phenolic content (TP), total flavonoids (TF), and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion scavenging (O2), ferric-reducing antioxidant power (FRAP), and cupric-reducing antioxidant capacity (CUPRAC) of the extracts are reported. The antifeedant potentials of the plant extracts were tested against Epilachna paenulata, Pseudaletia adultera, Macrosiphum euphorbiae, and Diaphorina citri insects for the first time. The activity against the aphid M. euphorbiae was significant for the DCM extracts of plants from Valparaíso and Curicó (settling % = 23% ± 4% and 23% ± 5%, respectively). The antifeedant activities against the beetle E. paenulata and the lepidoptera P. adultera were significant for Valparaíso extracts, especially when tested against E. Paenulata (IFP = 1.0 ± 0.0). Finally, the MeOH and EtOH extracts from Valparaíso plants reduced the diet consumption of the psilid D. citri (p < 0.05). The results showed that P. maculosa is a good source of flavonoids with some antioxidant capacities and has potential interest as botanical eco-friendly alternative with deterrent activity. Full article
Show Figures

Graphical abstract

25 pages, 3381 KB  
Article
Assessment of Local and Systemic Changes in Plant Gene Expression and Aphid Responses during Potato Interactions with Arbuscular Mycorrhizal Fungi and Potato Aphids
by Eric Rizzo, Tyler Sherman, Patricia Manosalva and S. Karen Gomez
Plants 2020, 9(1), 82; https://doi.org/10.3390/plants9010082 - 9 Jan 2020
Cited by 15 | Viewed by 5151
Abstract
This research examined aphid and plant responses to distinct levels (none, low, and high) of arbuscular mycorrhizal (AM) fungal root colonization by studying the association between potato aphids (Macrosiphum euphorbiae), potatoes (Solanum tuberosum), and AM fungi (Rhizophagus intraradices [...] Read more.
This research examined aphid and plant responses to distinct levels (none, low, and high) of arbuscular mycorrhizal (AM) fungal root colonization by studying the association between potato aphids (Macrosiphum euphorbiae), potatoes (Solanum tuberosum), and AM fungi (Rhizophagus intraradices). It extends knowledge on gene expression changes, assessed by RT–qPCR, of ten defense-related genes at two time-points post-herbivory (24 h and 10 days), focusing on aphid-infested local leaves, non-infested systemic leaves, and roots. The results showed that aphid fitness was not altered by AM symbiosis. At 24 h, ETHYLENE RECEPTOR 1 gene expression was repressed in roots of aphid-infested non-mycorrhizal plants and aphid-infested plants with a high level of AM fungal root colonization, but not on aphid-infested plants with a low level of AM fungal root colonization. At 10 days, ALLENE OXIDE CYCLASE and POTATO TYPE I PROTEASE INHIBITOR were upregulated exclusively in local leaves of aphid-infested plants with a low level of AM fungal root colonization. In addition, local and systemic changes in plant gene expression appeared to be regulated exclusively by AM status and aphid herbivory. In summary, the gene expression data provide insights on mycorrhizal potato responses to aphid herbivory and serve as a starting point for future studies using this system. Full article
(This article belongs to the Special Issue Insect-Plant-Microbe Interactions)
Show Figures

Figure 1

13 pages, 1962 KB  
Article
A Comparison of the Effects of FATTY ACID DESATURASE 7 and HYDROPEROXIDE LYASE on Plant–Aphid Interactions
by Jiamei Li, Carlos A. Avila, Denise M. Tieman, Harry J. Klee and Fiona L. Goggin
Int. J. Mol. Sci. 2018, 19(4), 1077; https://doi.org/10.3390/ijms19041077 - 4 Apr 2018
Cited by 6 | Viewed by 4679
Abstract
The spr2 mutation in tomato (Solanum lycopersicum), which disrupts function of FATTY ACID DESATURASE 7 (FAD7), confers resistance to the potato aphid (Macrosiphum euphorbiae) and modifies the plant’s C6 volatile profiles. To investigate whether C6 volatiles play a role [...] Read more.
The spr2 mutation in tomato (Solanum lycopersicum), which disrupts function of FATTY ACID DESATURASE 7 (FAD7), confers resistance to the potato aphid (Macrosiphum euphorbiae) and modifies the plant’s C6 volatile profiles. To investigate whether C6 volatiles play a role in resistance, HYDROPEROXIDE LYASE (HPL), which encodes a critical enzyme in C6 volatile synthesis, was silenced in wild-type tomato plants and spr2 mutants. Silencing HPL in wild-type tomato increased potato aphid host preference and reproduction on 5-week old plants but had no influence on 3-week old plants. The spr2 mutation, in contrast, conferred strong aphid resistance at both 3 and 5 weeks, and silencing HPL in spr2 did not compromise this aphid resistance. Moreover, a mutation in the FAD7 gene in Arabidopsis thaliana also conferred resistance to the green peach aphid (Myzus persicae) in a genetic background that carries a null mutation in HPL. These results indicate that HPL contributes to certain forms of aphid resistance in tomato, but that the effects of FAD7 on aphids in tomato and Arabidopsis are distinct from and independent of HPL. Full article
(This article belongs to the Special Issue Plant Innate Immunity 2.0)
Show Figures

Figure 1

10 pages, 418 KB  
Article
Host Plant Volatiles and the Sexual Reproduction of the Potato Aphid, Macrosiphum euphorbiae
by Jessica Hurley, Hiroyuki Takemoto, Junji Takabayashi and Jeremy N. McNeil
Insects 2014, 5(4), 783-792; https://doi.org/10.3390/insects5040783 - 24 Oct 2014
Cited by 4 | Viewed by 6503
Abstract
In late summer, heteroecious aphids, such as the potato aphid, Macrosiphum euphorbiae, move from their secondary summer host plants to primary host plants, where the sexual oviparae mate and lay diapausing eggs. We tested the hypothesis that volatiles of the primary host, [...] Read more.
In late summer, heteroecious aphids, such as the potato aphid, Macrosiphum euphorbiae, move from their secondary summer host plants to primary host plants, where the sexual oviparae mate and lay diapausing eggs. We tested the hypothesis that volatiles of the primary host, Rosa rugosa, would attract the gynoparae, the parthenogenetic alate morph that produce oviparae, as well as the alate males foraging for suitable mates. In wind tunnel assays, both gynoparae and males oriented towards and reached rose cuttings significantly more often than other odour sources, including potato, a major secondary host. The response of males was as high to rose cuttings alone as to potato with a calling virgin oviparous female. These findings are discussed within the seasonal ecology of host alternating aphids. Full article
(This article belongs to the Special Issue Pheromones and Insect Behaviour)
Show Figures

Figure 1

Back to TopTop