Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = MT pushing forces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3798 KiB  
Article
Remote Controlled Nociceptive Threshold Testing Systems in Large Animals
by Polly Taylor
Animals 2020, 10(9), 1556; https://doi.org/10.3390/ani10091556 - 2 Sep 2020
Cited by 9 | Viewed by 3413
Abstract
Nociceptive threshold (NT) testing is widely used for the study of pain and its alleviation. The end point is a normal behavioural response, which may be affected by restraint or unfamiliar surroundings, leading to erroneous data. Remotely controlled thermal and mechanical NT testing [...] Read more.
Nociceptive threshold (NT) testing is widely used for the study of pain and its alleviation. The end point is a normal behavioural response, which may be affected by restraint or unfamiliar surroundings, leading to erroneous data. Remotely controlled thermal and mechanical NT testing systems were developed to allow free movement during testing and were evaluated in cats, dogs, sheep, horses and camels. Thermal threshold (TT) testing incorporated a heater and temperature sensor held against the animal’s shaved skin. Mechanical threshold (MT) testing incorporated a pneumatic actuator attached to a limb containing a 1–2 mm radiused pin pushed against the skin. Both stimuli were driven from battery powered control units attached on the animal’s back, controlled remotely via infra-red radiation from a handheld component. Threshold reading was held automatically and displayed digitally on the unit. The system was failsafe with a safety cut-out at a preset temperature or force as appropriate. The animals accepted the equipment and behaved normally in their home environment, enabling recording of reproducible TT (38.5–49.8 °C) and MT (2.7–10.1 N); precise values depended on the species, the individual and the stimulus characteristics. Remote controlled NT threshold testing appears to be a viable refinement for pain research. Full article
(This article belongs to the Special Issue Refinements to Animal Models for Biomedical Research)
Show Figures

Figure 1

14 pages, 1399 KiB  
Review
Nuclear Mechanics in the Fission Yeast
by Paola Gallardo, Ramón R. Barrales, Rafael R. Daga and Silvia Salas-Pino
Cells 2019, 8(10), 1285; https://doi.org/10.3390/cells8101285 - 20 Oct 2019
Cited by 6 | Viewed by 6297
Abstract
In eukaryotic cells, the organization of the genome within the nucleus requires the nuclear envelope (NE) and its associated proteins. The nucleus is subjected to mechanical forces produced by the cytoskeleton. The physical properties of the NE and the linkage of chromatin in [...] Read more.
In eukaryotic cells, the organization of the genome within the nucleus requires the nuclear envelope (NE) and its associated proteins. The nucleus is subjected to mechanical forces produced by the cytoskeleton. The physical properties of the NE and the linkage of chromatin in compacted conformation at sites of cytoskeleton contacts seem to be key for withstanding nuclear mechanical stress. Mechanical perturbations of the nucleus normally occur during nuclear positioning and migration. In addition, cell contraction or expansion occurring for instance during cell migration or upon changes in osmotic conditions also result innuclear mechanical stress. Recent studies in Schizosaccharomyces pombe (fission yeast) have revealed unexpected functions of cytoplasmic microtubules in nuclear architecture and chromosome behavior, and have pointed to NE-chromatin tethers as protective elements during nuclear mechanics. Here, we review and discuss how fission yeast cells can be used to understand principles underlying the dynamic interplay between genome organization and function and the effect of forces applied to the nucleus by the microtubule cytoskeleton. Full article
(This article belongs to the Special Issue Nuclear Organisation)
Show Figures

Figure 1

30 pages, 3356 KiB  
Review
Anaphase B
by Jonathan M. Scholey, Gul Civelekoglu-Scholey and Ingrid Brust-Mascher
Biology 2016, 5(4), 51; https://doi.org/10.3390/biology5040051 - 8 Dec 2016
Cited by 53 | Viewed by 16350
Abstract
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major [...] Read more.
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation. Full article
(This article belongs to the Special Issue Mechanisms of Mitotic Chromosome Segregation)
Show Figures

Figure 1

Back to TopTop