Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Lister strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3811 KiB  
Article
Efficacy of Different Oncolytic Vaccinia Virus Strains for the Treatment of Murine Peritoneal Mesothelioma
by Can Yurttas, Julia Beil, Susanne Berchtold, Irina Smirnow, Linus D. Kloker, Bence Sipos, Markus W. Löffler, Alfred Königsrainer, André L. Mihaljevic, Ulrich M. Lauer and Karolin Thiel
Cancers 2024, 16(2), 368; https://doi.org/10.3390/cancers16020368 - 15 Jan 2024
Cited by 1 | Viewed by 2433
Abstract
Effective treatment options for peritoneal surface malignancies (PSMs) are scarce. Oncolytic virotherapy with recombinant vaccinia viruses might constitute a novel treatment option for PSM. We aimed to identify the most effective oncolytic vaccinia virus strain in two murine mesothelioma cell lines and the [...] Read more.
Effective treatment options for peritoneal surface malignancies (PSMs) are scarce. Oncolytic virotherapy with recombinant vaccinia viruses might constitute a novel treatment option for PSM. We aimed to identify the most effective oncolytic vaccinia virus strain in two murine mesothelioma cell lines and the oncolytic potential in a murine model of peritoneal mesothelioma. Cell lines AB12 and AC29 were infected in vitro with vaccinia virus strains Lister (GLV-1h254), Western Reserve (GLV-0b347), and Copenhagen (GLV-4h463). The virus strain GLV-0b347 was shown most effective in vitro and was further investigated by intraperitoneal (i.p.) application to AB12 and AC29 mesothelioma-bearing mice. Feasibility, safety, and effectiveness of virotherapy were assessed by evaluating the peritoneal cancer index (PCI), virus detection in tumor tissues and ascites, virus growth curves, and comparison of overall survival. After i.p. injection of GLV-0b347, virus was detected in both tumor cells and ascites. In comparison to mock-treated mice, overall survival was significantly prolonged, ascites was less frequent and PCI values declined. However, effective treatment was only observed in animals with limited tumor burden at the time point of virus application. Nonetheless, intraperitoneal virotherapy with GLV-0b347 might constitute a novel therapeutic option for the treatment of peritoneal mesothelioma. Additional treatment modifications and combinational regimes will be investigated to further enhance treatment efficacy. Full article
Show Figures

Figure 1

18 pages, 3810 KiB  
Article
Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models
by Yasmin Shakiba, Pavel O. Vorobyev, Victor A. Naumenko, Dmitry V. Kochetkov, Ksenia V. Zajtseva, Marat P. Valikhov, Gaukhar M. Yusubalieva, Yana D. Gumennaya, Egor A. Emelyanov, Alevtina S. Semkina, Vladimir P. Baklaushev, Peter M. Chumakov and Anastasia V. Lipatova
Viruses 2023, 15(4), 828; https://doi.org/10.3390/v15040828 - 24 Mar 2023
Cited by 10 | Viewed by 3510
Abstract
Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine [...] Read more.
Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated activation of the host’s immune response. Thus, the expression of bacterial flagellin by VV can enhance its oncolytic efficacy against immunosuppressive solid tumors. Full article
(This article belongs to the Special Issue Oncolytic Viruses as Immunotherapeutic Agents)
Show Figures

Figure 1

12 pages, 639 KiB  
Review
Effect of Serial Passage on the Pathogenicity and Immunogenicity of Vaccinia Virus LC16m8 Strain
by Akiko Eto, Norio Yamamoto and Yasuhiro Kanatani
Biology 2021, 10(11), 1158; https://doi.org/10.3390/biology10111158 - 9 Nov 2021
Cited by 10 | Viewed by 4591
Abstract
The phenotype of an attenuated live vaccine depends on gene mutation achieved by, for example, many passages in cultured cells. Viral clones with preferable phenotypes are selected and the causative genetic mutation(s) are later identified. LC16m8 is an example of a highly attenuated [...] Read more.
The phenotype of an attenuated live vaccine depends on gene mutation achieved by, for example, many passages in cultured cells. Viral clones with preferable phenotypes are selected and the causative genetic mutation(s) are later identified. LC16m8 is an example of a highly attenuated smallpox vaccine that was developed and licensed in Japan in the 1970s. LC16m8 was obtained by the passaging of Lister strain, with indicators of small plaque formation and temperature sensitivity as virus phenotypes. This strain can replicate in mammalian cells and provides robust cellular and humoral immunity, as well as long-term immune memory. Recent studies using proteome-wide antigen arrays have revealed that antibody production against LC16m8 and other VACVs differs largely among individuals. Moreover, associations between SNPs in immune-related genes and immune outcomes have been increasingly found. These results lead to predicting adverse events of a vaccine, which is a purpose of vaccinomics. Studies on VACV will continue to contribute to the understanding of host-pathogen interactions and to development of a vaccine for other infectious and non-infectious diseases. Here, we review studies of VACV, including our recent research on LC16m8, with a focus on the phenotype and genotype, and we discuss future research directions. Full article
Show Figures

Figure 1

13 pages, 2077 KiB  
Article
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice
by Sergei N. Shchelkunov, Stanislav N. Yakubitskiy, Kseniya A. Titova, Stepan A. Pyankov and Alexander A. Sergeev
Pathogens 2021, 10(3), 377; https://doi.org/10.3390/pathogens10030377 - 21 Mar 2021
Cited by 2 | Viewed by 2876
Abstract
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction [...] Read more.
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. The obtained data demonstrate that intradermal inoculation of the studied viruses induces higher production of VACV-specific antibodies compared to their levels after intranasal administration. Introduction of two point mutations into the A34R gene, which increase the yield of extracellular enveloped virions, and deletion of the A35R gene, the protein product of which inhibits presentation of antigens by MHC II, enhances protective potency of the created LIVP-TK--A34R*-dA35R virus against secondary lethal orthopoxvirus infection of BALB/c mice even at an intradermal dose as low as 103 plaque forming units (PFU)/mouse. This virus may be considered not only as a candidate attenuated live vaccine against smallpox and other human orthopoxvirus infections but also as a vector platform for development of safe multivalent live vaccines against other infectious diseases using genetic engineering methods. Full article
(This article belongs to the Special Issue Poxviruses: Novel Concepts and Emerging Trends)
Show Figures

Figure 1

19 pages, 8119 KiB  
Article
Assessing and Overcoming Resistance Phenomena against a Genetically Modified Vaccinia Virus in Selected Cancer Cell Lines
by Susanne Berchtold, Julia Beil, Christian Raff, Irina Smirnow, Martina Schell, Janina D’Alvise, Silvia Gross and Ulrich M. Lauer
Int. J. Mol. Sci. 2020, 21(20), 7618; https://doi.org/10.3390/ijms21207618 - 15 Oct 2020
Cited by 8 | Viewed by 2604
Abstract
Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of [...] Read more.
Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a “high-grade resistance” pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy. Full article
(This article belongs to the Special Issue Oncolytic Virotherapy)
Show Figures

Figure 1

9 pages, 629 KiB  
Review
Buffalopox Virus: An Emerging Virus in Livestock and Humans
by Kamal H. Eltom, Abdallah M. Samy, Ahmed Abd El Wahed and Claus-Peter Czerny
Pathogens 2020, 9(9), 676; https://doi.org/10.3390/pathogens9090676 - 20 Aug 2020
Cited by 26 | Viewed by 6587
Abstract
Buffalopox virus (BPXV) is the cause of buffalopox, which was recognized by the FAO/WHO Joint Expert Committee on Zoonosis as an important zoonotic disease. Buffalopox was first described in India, later in other countries, and has become an emerging contagious viral zoonotic disease [...] Read more.
Buffalopox virus (BPXV) is the cause of buffalopox, which was recognized by the FAO/WHO Joint Expert Committee on Zoonosis as an important zoonotic disease. Buffalopox was first described in India, later in other countries, and has become an emerging contagious viral zoonotic disease infecting milkers with high morbidity among affected domestic buffalo and cattle. BPXV is a member of the genus Orthopoxvirus and a close variant of the vaccinia virus (VACV). Recent genome data show that BPXV shares a most recent common ancestor of VACV Lister strain, which had been used for inoculating buffalo calves to produce a Smallpox vaccine. Over time, VACV evolved into BPXV by establishing itself in buffaloes to be increasingly pathogenic to this host and to make infections in cattle and humans. Together with the current pandemic of SARS-COV2/COVID 19, BPXV infections illustrate how vulnerable the human population is to the emergence and re-emergence of viral pathogens from unsuspected sources. In view that majority of the world population are not vaccinated against smallpox and are most vulnerable in the event of its re-emergence, reviewing and understanding the biology of vaccinia-like viruses are necessary for developing a new generation of safer smallpox vaccines in the smallpox-free world. Full article
(This article belongs to the Section Animal Pathogens)
Show Figures

Figure 1

20 pages, 4862 KiB  
Article
Potent Antitrypanosomal Activities of 3-Aminosteroids against African Trypanosomes: Investigation of Cellular Effects and of Cross-Resistance with Existing Drugs
by Charles O. Nnadi, Godwin U. Ebiloma, Jennifer A. Black, Ngozi J. Nwodo, Leandro Lemgruber, Thomas J. Schmidt and Harry P. de Koning
Molecules 2019, 24(2), 268; https://doi.org/10.3390/molecules24020268 - 12 Jan 2019
Cited by 16 | Viewed by 5438
Abstract
Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of [...] Read more.
Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of selected compounds of this series against T. congolense (Savannah-type, IL3000), T. b. brucei (bloodstream trypomastigote, Lister strain 427 wild-type (427WT)) and various multi-drug resistant cell lines was assessed using a resazurin-based cell viability assay. Studies on mode of antitrypanosomal activity of some selected 3-aminosteroids against Tbb 427WT were also carried out. The tested compounds mostly showed moderate-to-low in vitro activities and low selectivity to mammalian cells. Interestingly, a certain aminosteroid, holarrhetine (10, IC50 = 0.045 ± 0.03 µM), was 2 times more potent against T. congolense than the standard veterinary drug, diminazene aceturate, and 10 times more potent than the control trypanocide, pentamidine, and displayed an excellent in vitro selectivity index of 2130 over L6 myoblasts. All multi-drug resistant strains of T. b. brucei tested were not significantly cross-resistant with the purified compounds. The growth pattern of Tbb 427WT on long and limited exposure time revealed gradual but irrecoverable growth arrest at ≥ IC50 concentrations of 3-aminosteroids. Trypanocidal action was not associated with membrane permeabilization of trypanosome cells but instead with mitochondrial membrane depolarization, reduced adenosine triphosphate (ATP) levels and G2/M cell cycle arrest which appear to be the result of mitochondrial accumulation of the aminosteroids. These findings provided insights for further development of this new and promising class of trypanocide against African trypanosomes. Full article
Show Figures

Figure 1

12 pages, 1193 KiB  
Review
The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus
by Déborah Delaune, Frédéric Iseni, Audrey Ferrier-Rembert, Christophe N. Peyrefitte and Olivier Ferraris
Viruses 2018, 10(1), 3; https://doi.org/10.3390/v10010003 - 23 Dec 2017
Cited by 4 | Viewed by 6256
Abstract
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to [...] Read more.
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses. Full article
(This article belongs to the Special Issue Smallpox and Emerging Zoonotic Orthopoxviruses: What Is Coming Next?)
Show Figures

Figure 1

16 pages, 14701 KiB  
Article
Features of the Antitumor Effect of Vaccinia Virus Lister Strain
by Evgeniy Zonov, Galina Kochneva, Anastasiya Yunusova, Antonina Grazhdantseva, Vladimir Richter and Elena Ryabchikova
Viruses 2016, 8(1), 20; https://doi.org/10.3390/v8010020 - 12 Jan 2016
Cited by 15 | Viewed by 7368
Abstract
Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, “natural” oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain [...] Read more.
Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, “natural” oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells. Full article
(This article belongs to the Special Issue Oncolytic Viruses)
Show Figures

Graphical abstract

17 pages, 441 KiB  
Review
Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications
by Minoru Kidokoro and Hisatoshi Shida
Vaccines 2014, 2(4), 755-771; https://doi.org/10.3390/vaccines2040755 - 17 Oct 2014
Cited by 22 | Viewed by 8473
Abstract
The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety [...] Read more.
The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R) from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID) mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV), Modified Vaccinia Ankara (MVA), at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8+ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs). Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8+ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors. Full article
(This article belongs to the Special Issue Vaccine Vector)
Show Figures

Figure 1

Back to TopTop