Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Lilium longiflorum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12488 KiB  
Article
Morphological and Anatomical Characterization of Stems in Lilium Taxa
by Peng Zhou, Kuangkuang Liao, Xiunian Feng, Rui Liang, Nianjun Teng and Fang Du
Horticulturae 2025, 11(5), 546; https://doi.org/10.3390/horticulturae11050546 - 18 May 2025
Viewed by 592
Abstract
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, [...] Read more.
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, four distinct jigsaw-puzzle-shaped shapes of epidermal cells (Ep) in monocot stems, novel I-shaped and Co-xylem (O-, X-, W-, Q-shaped) vascular bundles (Vb) in Lilium stems, and quantitative characteristics (Vb density, xylem/phloem area ratio, etc.) were systematically discovered and analyzed. Asiatic (A) and Longiflorum × A (LA) hybrids displayed epidermal appendages, while Oritenal × Trumpet (OT) hybrids featured thicker sclerenchymatous rings (Sr). Collateral Vb in hybrids visually displayed bicollateral with degraded bundle sheaths (Bs), contrasting with intact circular Bs in wild species. Ward.D clustering categorized Lilium taxa into group A (Oritenal and OT hybrids) and B (A, LA, Trumpet, Longiflorum × Oriental hybrids and wild species), with Mantel’s test identified height, Ep shape, Ep length/width ratio, cortex/Sr thickness ratio and Bs integrity as key discriminators. Bending stems exhibited a higher Vb area. These findings establish a comprehensive pheno-anatomical framework for Lilium, which can guide future breeding programs and ecological studies. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

14 pages, 3413 KiB  
Article
Cultivating Callus from Anthers and Regenerating Haploid Plants in Lilium longiflorum
by Yingyang Li, Yufan Li, Xuanke Dong, Yanfang Cai, Jiren Chen, Rong Liu and Fan Zhu
Horticulturae 2025, 11(4), 349; https://doi.org/10.3390/horticulturae11040349 - 24 Mar 2025
Viewed by 722
Abstract
In vitro anther culture is a technique used to produce haploid plants when regenerating varieties with specific traits. To generate haploid plants with preferred characteristics, an anther culture technique was established for Lilium longiflorum “Show Up”. Morphological characteristics were recorded, including the flower [...] Read more.
In vitro anther culture is a technique used to produce haploid plants when regenerating varieties with specific traits. To generate haploid plants with preferred characteristics, an anther culture technique was established for Lilium longiflorum “Show Up”. Morphological characteristics were recorded, including the flower bud length and anther color corresponding to different stages of microspore development. The effects of different flower bud lengths, various concentrations of exogenous plant growth regulators (PGRs), low-temperature pretreatment at 4 °C, and incubation under dark conditions on the induction of callus formation were studied. When the flower buds were 2.2–2.4 cm in length and the microspores were in the mononuclear development phase, callus induction reached the highest rate (15.6%). Callus was not induced when the PGRs 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KT) were added separately to the growth medium, but the highest callus induction rate occurred when anthers were cultured on the medium containing 2,4-D (0.75–1.0 mg/L) and KT (4 mg/L). The low-temperature pretreatment significantly enhanced the induction rate of anthers, but prolonged low-temperature pretreatment reduced the induction rate. The optimal period of cultivation in darkness was 6 d. After 15 days of cultivation, the number of swollen anthers was recorded, and these were transferred onto the differentiation medium Murashige and Skoog (MS) + 1-naphthaleneacetic acid (NAA) (2.0 mg/L), sucrose (30 g/L), and agar (7 g/L) at pH 5.8, whereon 100% differentiation was recorded. Overall, 14 regenerated lines were obtained by in vitro anther culture. Chromosome ploidy was determined by counting chromosomes in the root tips of ten regenerated plants, and four were found to be haploids. This study lays the foundation for anther culture in lilies to shorten the breeding cycle, improve selection efficiency, facilitate efficient genetic transformation, and enable the effective production of both haploid and double-haploid plants. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

10 pages, 1009 KiB  
Article
Pre-Harvest Chemical Compounds Influence Lily (Lilium × elegans) Leaf and Flower Indigenous Phenols, Flavonoids and Gibberellic Acid Levels
by Ahmed AlFayad and Yahia Othman
Int. J. Plant Biol. 2024, 15(3), 551-560; https://doi.org/10.3390/ijpb15030042 - 26 Jun 2024
Cited by 3 | Viewed by 1617
Abstract
The global cut flower industry, including lilies, represents a highly promising investment. Therefore, improving the quantity and quality of these commercially significant flower species is crucial. The objectives of this study were to (1) evaluate the influence of different pre-harvest chemical compounds on [...] Read more.
The global cut flower industry, including lilies, represents a highly promising investment. Therefore, improving the quantity and quality of these commercially significant flower species is crucial. The objectives of this study were to (1) evaluate the influence of different pre-harvest chemical compounds on endogenous GA3, phenol, flavonoids and total antioxidants levels on the leaf and petals parts of Longiflorum-Asiatic (Lilium × elegans cv. Cevennes, yellow) lily and to (2) assess the effect of these compound on the flower quality component. The study was conducted over two cycles in both greenhouse and laboratory settings. Lily bulbs were transplanted into 10 L pots and grown for 70 days. Treatments were applied by spraying twice with a five-day interval on the flowers still on the plants and not yet fully opened. The treatments included 8-hydroxyquinoline sulfate (8HQS) at 100, 200, and 400 mg L−1; salicylic acid (SA) at 100 and 200 mg L−1; SmartFresh™ at 1 and 2 mg L−1; Harvista™ at 150 mg L−1; GA₃ at 50 mg L−1; and a control (water). The lily stems were harvested when one of the flowering buds began to open but was not fully opened. A post-harvest assessment was conducted in the laboratory at room temperature (20 ± 2 °C). The results showed that the lily leaf had a much higher endogenous concentration of GA3 (256%) and lower concentrations of total phenols (22%), flavonoids (28%), and antioxidant activity (14%) when compared to flower petals. In addition, the foliar application of flower preservative compounds one week before harvesting significantly improved the endogenous levels of GA3, total phenols, flavonoids, and antioxidants activity, especially SmartFresh™ at rate of 1 mg L−1. In terms of flower quality, SmartFresh™, at rate of 1 mg L−1, and 8-HQS, at rate of 200, had consistently higher vase lives compared to the control treatment across the two experimental cycles. Compared to the control, SmartFresh™ (the post-harvest ethylene control) increased the vase life of lily flowers by 35% at cycle 1 and 31% at cycle 2 while 8-HQS, at rate of 200 mg L−1, increased the vase life by 21% and 15% at cycles 1 and 2, respectively. However, no significant effect was found in the petal flower color coordinates (L*, a* and b*) across the treatments. Overall, the foliar application of preservative compounds (such as SmartFresh™) at the pre-harvest stage potentially stimulates the endogenous levels of GA3, total phenols, flavonoids, and antioxidants activity, leading to better improvements in post-harvest flower quality, specifically vase life. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

15 pages, 3865 KiB  
Article
Obtaining and Characterization of an Interspecific Hybrid between Lilium callosum and ‘Snow Queen’ and Evaluation of the Botrytis Stress Response
by Yongyao Fu, Shulin Lu, Chengchen Liu, Chaojun Ding, Xiaoyu Wang, Xinrong Li, Sijia Jiang and Liping Yang
Plants 2024, 13(10), 1376; https://doi.org/10.3390/plants13101376 - 15 May 2024
Cited by 2 | Viewed by 1418
Abstract
To cultivate excellent lily germplasms, an interspecific hybrid (LC×SQ-01) was successfully obtained by using a cut-style pollination method in which the rare wild lily Lilium callosum was used as the female parent and the cut flower L. longiflorum ‘Snow Queen’ was used as [...] Read more.
To cultivate excellent lily germplasms, an interspecific hybrid (LC×SQ-01) was successfully obtained by using a cut-style pollination method in which the rare wild lily Lilium callosum was used as the female parent and the cut flower L. longiflorum ‘Snow Queen’ was used as the male parent. The morphological features of LC×SQ-01 included height, leaf length, and width, which were observed to be between those of the parents in the tissue-cultured seedlings. The height and leaf length of LC×SQ-01 were more similar to those of the male parent, and the width was between the widths of the parents for field-generated plants. The epidermal cell length and the guard cell and stoma sizes were between those of both parents in tissue-cultured and field-generated plants. In addition, the shapes of the epidermal cells and anticlinal wall in LC×SQ-01 were more analogous to those in the male parent, while the stoma morphology was different from that of both parents. Fourteen pairs of polymorphic SSR primers were identified in both parents, and the validity of LC×SQ-01 was demonstrated by PCR amplification using five pairs of SSR primers. Flow cytometry and root tip squashing assays revealed that LC×SQ-01 was a diploid plant, similar to its parents. Furthermore, the LC×SQ-01 hybrid was more resistant to B. cinerea than its parents, and it also showed much greater peroxidase (POD) and catalase (CAT) activity than the parents. These results lay a foundation for breeding a new high-resistance and ornamental lily variety. Full article
(This article belongs to the Special Issue Flower Germplasm Resource and Genetic Breeding)
Show Figures

Figure 1

15 pages, 1425 KiB  
Article
Plant Hormone and Fatty Acid Screening of Nicotiana tabacum and Lilium longiflorum Stigma Exudates
by Maria Breygina, Dmitry Kochkin, Alexander Voronkov, Tatiana Ivanova, Ksenia Babushkina and Ekaterina Klimenko
Biomolecules 2023, 13(9), 1313; https://doi.org/10.3390/biom13091313 - 27 Aug 2023
Cited by 3 | Viewed by 1882
Abstract
Pollen germination in vivo on wet stigmas is assisted by the receptive fluid—stigma exudate. Its exact composition is still unknown because only some components have been studied. For the first time, hormonal screening was carried out, and the fatty acid (FA) composition of [...] Read more.
Pollen germination in vivo on wet stigmas is assisted by the receptive fluid—stigma exudate. Its exact composition is still unknown because only some components have been studied. For the first time, hormonal screening was carried out, and the fatty acid (FA) composition of lipid-rich (Nicotiana tabacum) and sugar-rich (Lilium longiflorum) exudates was studied. Screening of exudate for the presence of plant hormones using HPLC-MS revealed abscisic acid (ABA) in tobacco stigma exudate at the two stages of development, at pre-maturity and in mature stigmas awaiting pollination, increasing at the fertile stage. To assess physiological significance of ABA on stigma, we tested the effect of this hormone in vitro. ABA concentration found in the exudate strongly stimulated the germination of tobacco pollen, a lower concentration had a weaker effect, increasing the concentration did not increase the effect. GC-MS analysis showed that both types of exudate are characterized by a predominance of saturated FAs. The lipids of tobacco stigma exudate contain significantly more myristic, oleic, and linoleic acids, resulting in a higher unsaturation index relative to lily stigma exudate lipids. The latter, in turn, contain more 14-hexadecenoic and arachidic acids. Both exudates were found to contain significant amounts of squalene. The possible involvement of saturated FAs, ABA, and squalene in various exudate functions, as well as their potential relationship on the stigma, is discussed. Full article
(This article belongs to the Special Issue Phytohormones 2022–2023)
Show Figures

Figure 1

19 pages, 4593 KiB  
Article
Ethylene Response Factor LlERF110 Mediates Heat Stress Response via Regulation of LlHsfA3A Expression and Interaction with LlHsfA2 in Lilies (Lilium longiflorum)
by Yue Wang, Yunzhuan Zhou, Rui Wang, Fuxiang Xu, Shi Tong, Cunxu Song, Yanan Shao, Mingfang Yi and Junna He
Int. J. Mol. Sci. 2022, 23(24), 16135; https://doi.org/10.3390/ijms232416135 - 17 Dec 2022
Cited by 13 | Viewed by 2669
Abstract
Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat [...] Read more.
Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway. Full article
(This article belongs to the Special Issue Crop Biotic and Abiotic Stress Tolerance 2.0)
Show Figures

Figure 1

25 pages, 4960 KiB  
Article
Taxonomy and Phylogenetic Appraisal of Dothideomycetous Fungi Associated with Magnolia, Lilium longiflorum and Hedychium coronarium
by Nimali I. de Silva, Kasun M. Thambugala, Danushka S. Tennakoon, Samantha C. Karunarathna, Jaturong Kumla, Nakarin Suwannarach and Saisamorn Lumyong
J. Fungi 2022, 8(10), 1094; https://doi.org/10.3390/jof8101094 - 17 Oct 2022
Cited by 9 | Viewed by 2901
Abstract
This paper highlights the taxonomy of some interesting saprobic microfungi associated with dead plant materials of Hedychium coronarium, Lilium longiflorum, and Magnolia species. The taxa reported in this study belong to the orders Pleosporales and Kirschsteiniotheliales (Dothideomycetes). These taxa [...] Read more.
This paper highlights the taxonomy of some interesting saprobic microfungi associated with dead plant materials of Hedychium coronarium, Lilium longiflorum, and Magnolia species. The taxa reported in this study belong to the orders Pleosporales and Kirschsteiniotheliales (Dothideomycetes). These taxa were identified based on multi-locus phylogeny of nuclear ribosomal DNA (rDNA) (LSU, SSU, and ITS) and protein-coding genes (tef1-α and rpb2), together with comprehensive morphological characterization. Two novel saprobic species, Leptoparies magnoliae sp. nov. and Neobambusicola magnoliae sp. nov., are introduced from Magnolia species in Thailand. Another new species, Asymmetrispora zingiberacearum sp. nov., is also described from dead stems of H. coronarium, which is the first asexual morph species of the genus Asymmetrispora. In addition, Ramusculicola thailandica and Kirschsteiniothelia thailandica are reported as new host records from dead twigs of Magnolia species. Sphaerellopsis paraphysata is reported as a new host record from L. longiflorum. Newly described taxa are compared with other similar species and detailed descriptions, micrographs, and phylogenetic trees to show the positions are provided. Full article
(This article belongs to the Topic Fungal Diversity)
Show Figures

Figure 1

18 pages, 4834 KiB  
Article
Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in Lilium longiflorum with Different Bulb Sizes
by Xiao Yan, Lian-Juan Wang, Yu-Qian Zhao and Gui-Xia Jia
Int. J. Mol. Sci. 2022, 23(15), 8341; https://doi.org/10.3390/ijms23158341 - 28 Jul 2022
Cited by 4 | Viewed by 2706
Abstract
Lilium longiflorum is a wild Lilium, and its flowering transition requires a long period of cold exposure to meet the demand of vernalization. The responses of different sized bulbs to cold exposure and photoperiod are different, and the floral transition pathways of [...] Read more.
Lilium longiflorum is a wild Lilium, and its flowering transition requires a long period of cold exposure to meet the demand of vernalization. The responses of different sized bulbs to cold exposure and photoperiod are different, and the floral transition pathways of small and large bulbs are different. In this study, small and large bulbs were placed in cold storage for different weeks and then cultured at a constant ambient temperature of 25 °C under long day (LD) and short day (SD) conditions. Then, the flowering characteristics and expression patterns of key genes related to the vernalization and photoperiod pathways in different groups were calculated and analyzed. The results showed that the floral transition of Lilium longiflorum was influenced by both vernalization and photoperiod, that vernalization and LD conditions can significantly improve the flowering rate of Lilium longiflorum, and that the time from planting to visible flowering buds’ appearance was decreased. The flowering time and rate of large bulbs were greatly influenced by cold exposure, and the vernalization pathway acted more actively at the floral transition stage. The floral transition of small bulbs was affected more by the photoperiod pathway. Moreover, it was speculated that cold exposure may promote greater sensitivity of the small bulbs to LD conditions. In addition, the expression of LlVRN1, LlFKF1, LlGI, LlCO5, LlCO7, LlCO16, LlFT1, LlFT3 and LlSOC1 was high during the process of floral transition, and LlCO13, LlCO14 and LlCO15 were highly expressed in the vegetative stage. The expression of LlCO13 and LlCO14 was different under different lighting conditions, and the flowering induction function of LlCO9 and LlFT3 was related to vernalization. Moreover, LlFKF1, LlGI, LlCO5, LlCO16, LlSOC1 and LlFT2 were involved in the entire growth process of plants, while LlCO6, LlCO16 and LlFT1 are involved in the differentiation and formation of small bulblets of plants after the inflorescence stage, and this process is also closely related to LD conditions. This study has great significance for understanding the molecular mechanisms of the vernalization and photoperiod flowering pathways of Lilium longiflorum. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 27118 KiB  
Article
The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies (Lilium Longiflorum)
by Chengpeng Wang, Yunzhuan Zhou, Xi Yang, Bing Zhang, Fuxiang Xu, Yue Wang, Cunxu Song, Mingfang Yi, Nan Ma, Xiaofeng Zhou and Junna He
Int. J. Mol. Sci. 2022, 23(1), 572; https://doi.org/10.3390/ijms23010572 - 5 Jan 2022
Cited by 37 | Viewed by 5627
Abstract
Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still [...] Read more.
Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 2298 KiB  
Article
Genome-Wide Transcriptomic Identification and Functional Insight of Lily WRKY Genes Responding to Botrytis Fungal Disease
by Shipra Kumari, Bashistha Kumar Kanth, Ju young Ahn, Jong Hwa Kim and Geung-Joo Lee
Plants 2021, 10(4), 776; https://doi.org/10.3390/plants10040776 - 15 Apr 2021
Cited by 15 | Viewed by 3082
Abstract
Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified [...] Read more.
Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease. Full article
(This article belongs to the Special Issue Flower Crops Breeding)
Show Figures

Figure 1

12 pages, 3653 KiB  
Article
Characterization of a Cis-Prenyltransferase from Lilium longiflorum Anther
by Jyun-Yu Yao, Kuo-Hsun Teng, Ming-Che Liu, Co-Shine Wang and Po-Huang Liang
Molecules 2019, 24(15), 2728; https://doi.org/10.3390/molecules24152728 - 26 Jul 2019
Cited by 3 | Viewed by 3840
Abstract
A group of prenyltransferases catalyze chain elongation of farnesyl diphosphate (FPP) to designated lengths via consecutive condensation reactions with specific numbers of isopentenyl diphosphate (IPP). cis-Prenyltransferases, which catalyze cis-double bond formation during IPP condensation, usually synthesize long-chain products as lipid carriers [...] Read more.
A group of prenyltransferases catalyze chain elongation of farnesyl diphosphate (FPP) to designated lengths via consecutive condensation reactions with specific numbers of isopentenyl diphosphate (IPP). cis-Prenyltransferases, which catalyze cis-double bond formation during IPP condensation, usually synthesize long-chain products as lipid carriers to mediate peptidoglycan biosynthesis in prokaryotes and protein glycosylation in eukaryotes. Unlike only one or two cis-prenyltransferases in bacteria, yeast, and animals, plants have several cis-prenyltransferases and their functions are less understood. As reported here, a cis-prenyltransferase from Lilium longiflorum anther, named LLA66, was expressed in Saccharomyces cerevisiae and characterized to produce C40/C45 products without the capability to restore the growth defect from Rer2-deletion, although it was phylogenetically categorized as a long-chain enzyme. Our studies suggest that evolutional mutations may occur in the plant cis-prenyltransferase to convert it into a shorter-chain enzyme. Full article
(This article belongs to the Special Issue Plant Isoprenoids)
Show Figures

Figure 1

18 pages, 4349 KiB  
Article
Establishment of Efficient Genetic Transformation Systems and Application of CRISPR/Cas9 Genome Editing Technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven
by Rui Yan, Zhiping Wang, Yamin Ren, Hongyu Li, Na Liu and Hongmei Sun
Int. J. Mol. Sci. 2019, 20(12), 2920; https://doi.org/10.3390/ijms20122920 - 14 Jun 2019
Cited by 75 | Viewed by 6784
Abstract
Lilium spp. is a bulb flower with worldwide distribution and unique underground organs. The lack of an efficient genetic transformation system for Lilium has been an international obstacle. Because existing model plants lack bulbs, bulb-related gene function verification studies cannot be carried out [...] Read more.
Lilium spp. is a bulb flower with worldwide distribution and unique underground organs. The lack of an efficient genetic transformation system for Lilium has been an international obstacle. Because existing model plants lack bulbs, bulb-related gene function verification studies cannot be carried out in model plants. Here, two stable and efficient genetic transformation systems based on somatic embryogenesis and adventitious bud regeneration were established in two Lilium species. Transgenic plants and T-DNA insertion lines were confirmed by β-glucuronidase (GUS) assay, polymerase chain reaction (PCR) and Southern blot. After condition optimization, transformation efficiencies were increased to 29.17% and 4% in Lilium pumilum DC. Fisch. and the Lilium longiflorum ‘White Heaven’, respectively. To further verify the validity of these transformation systems and apply the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9) technology in Lilium, the LpPDS gene in the two Lilium species was knocked out. Completely albino, pale yellow and albino–green chimeric mutants were observed. Sequence analysis in the transgenic lines revealed various mutation patterns, including base insertion, deletion and substitution. These results verified the feasibility and high efficiency of both transformation systems and the successful application of the CRISPR/Cas9 system to gene editing in Lilium for the first time. Overall, this study lays an important foundation for gene function research and germplasm improvement in Lilium spp. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 797 KiB  
Review
ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature
by Vadim Demidchik
Int. J. Mol. Sci. 2018, 19(4), 1263; https://doi.org/10.3390/ijms19041263 - 23 Apr 2018
Cited by 129 | Viewed by 9737
Abstract
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte [...] Read more.
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K+ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K+ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K+ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K+ channels have recently been identified as products of Stellar K+ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K+ channel (GORK) genes. Full article
(This article belongs to the Special Issue Plasma-Membrane Transport)
Show Figures

Figure 1

14 pages, 1654 KiB  
Article
Exploration and Exploitation of Novel SSR Markers for Candidate Transcription Factor Genes in Lilium Species
by Manosh Kumar Biswas, Ujjal Kumar Nath, Jewel Howlader, Mita Bagchi, Sathishkumar Natarajan, Md Abdul Kayum, Hoy-Taek Kim, Jong-In Park, Jong-Goo Kang and Ill-Sup Nou
Genes 2018, 9(2), 97; https://doi.org/10.3390/genes9020097 - 14 Feb 2018
Cited by 21 | Viewed by 5259
Abstract
Lilies (Lilium sp.) are commercially important horticultural crops widely cultivated for their flowers and bulbs. Here, we conducted large-scale data mining of the lily transcriptome to develop transcription factor (TF)-associated microsatellite markers (TFSSRs). Among 216,768 unigenes extracted from our sequence data, 6966 [...] Read more.
Lilies (Lilium sp.) are commercially important horticultural crops widely cultivated for their flowers and bulbs. Here, we conducted large-scale data mining of the lily transcriptome to develop transcription factor (TF)-associated microsatellite markers (TFSSRs). Among 216,768 unigenes extracted from our sequence data, 6966 unigenes harbored simple sequence repeats (SSRs). Seventy-one SSRs were associated with TF genes, and these were used to design primers and validate their potential as markers. These 71 SSRs were accomplished with 31 transcription factor families; including bHLH, MYB, C2H2, ERF, C3H, NAC, bZIP, and so on. Fourteen highly polymorphic SSRs were selected based on Polymorphic Information Content (PIC) values and used to study genetic diversity and population structure in lily accessions. Higher genetic diversity was observed in Longiflorum compared to Oriental and Asiatic populations. Lily accessions were divided into three sub-populations based in our structure analysis, and an un-rooted neighbor-joining tree effectively separated the accessions according to Asiatic, Oriental, and Longiflorum subgroups. Finally, we showed that 46 of the SSR-associated genes were differentially expressed in response to Botrytis elliptica infection. Thus, our newly developed TFSSR markers represent a powerful tool for large-scale genotyping, high-density and comparative mapping, marker-aided backcrossing, and molecular diversity analysis of Lilium sp. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop